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20.\¥Abstract

Parzen (1979) suggests a location and scale model for the quantile

function (inverse distribution function) of a random variable. We

extend this model to the two sample and k-sample problems and some

"

results are given which, when fully implemented, will yield more
general solutions in the analysis of variance. Most of the work here
concerns the location and scale model suggested by Parzen (1980) for
the two sample problem for testing the equality of two distribution

functions versus local alternatives.

We implement this model (its tests and estimators) for seven under-
lying densities. We then provide criteria for choosing or determining
whether an underlying density models the differences of the two samples
adequately. These criteria allow one to choose the best of several
underlying densities for the data. We illustrate these techniques by
analyzing data sets from the literature and making comparisons with

) other authors' techniques. We also show how the Parzen (1980) model

is related to many of the techniques developed for studying differences
of two samples over the past 50 years. We suggest extensions of
Parzen's model. Finally, we give a few simulated examples and suggest
what type of simulation study is needed to further define the usefulness

of the various models presented in the dissertation.
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1. INTRODUCTION

1.1 The Problem

A fundamental problem of statistical theory and application is the
two sample problem, i.e., comparing two populations given random sam-
ples from each. For example, researchers are often interested in in-
ferring the effect of a treatment on a response variable for some
general population. The inference is based on the observed responses
from a control group and a treatment group selected from the popu-~
lation being studied. The various methods of dealing with these two
data sets have been generalized to k groups and have also been used
in developing general statistical theory. The two sample problem has

indeed been a cornerstone of statistical science. We begin by giving

a series of definitions basic to the approach we shall use. In these

definitions we follow Parzen (1961, 1967, 1979,.1980).

1.1.1 Definitions and Notations

We have independent realizations {Xl, Xps vves Xm} and
{Yl, Y2, ceny Yn} of continuous random variables X and Y having con-
tinuous increasing distribution functions F(x) and G(x) respectively.
The distribution functions F(x) and G(x) often represent those of the
control and treatment groups respectively. A popular model for X

i

and Yj’ which {s assumed in this work, is that both distributions are

a location and scale change from a common distribution function,

Fo(x)’ 1.2., fOr -® < b 4 < ,

This dissertation will follow the style of the Journal of the
American Statistical Association.




X-u
F(x) = Fo ( o

X-u

1 2

) LB = F (5D .

1 %

The sample distribution functions are defined by:

. 1 m
F(x) = < 121 I(X<x)

< X <

(1.1

< X < o

~ 1 n
G(x) = < I o1(y.<x)
j=1 -

where

I(utip) = 0 , ({f Uy >u |,

'l’if“ii“

The combined sample distribution function is given by

H(x) = A F(x) + (1-}) G(x) , (1.2)

where A = % and N = mtn. We can regard H as a nonparametric es- ﬁ

timator of the distribution function

H(x) = X F(x) + (1-1) G(x)

We also use the sample quantile functions, N
- =1 - =1 - ~=1
Qe(u)=F “(u), 0y(u)=G “(u), and Q (u)=H "(u) , (1.3)

where in general the quantile function Q is defined by

Q(w) = Fl(u) = inf (x:F(x) > u} , Q<u<l . (1.4)
X

We also define a sample comparison distribution function by

D(w) = FIE 2 (w)] , O<u<l |, 1.s)




and the population comparison distribution function corresponding to

D(u) by

D(w = FIH YW, 0<u<l . (1.6)

Alternative definitions for a comparison function are FG-l, GF-l, G'F

and F-lG. Doksum and Sievers (1976) and others have studied some of
these alternative comparison functions.

Switzer (1976), Doksum and Sievers (1976), Wilk and Gnanades-
ikan (1968), Doksum (1974) and Steck, Zimmer, and Williams (1974)
have also studied comparison functions. However, here D(u)=F[H—1(u)]
is preferred because it tends to have more jump points than any of
the other forms. It is, in a sense, "smoother" than any of the
others. Furthermore, {RNi; 1< i < N} the set of relative ranks
of the X sample are given by

PR
Ryg = m FIH ™ (] :

as noted in Pyke and Shorack (1968) . In sections 4.1-4.3 we will
provide some data analytic comparisons of our approach with those

using alternative comparison functions., These comparisons will also

emphasize the theoretical differences.

In modelling D(u) and Q(u) we require the density-quantile

function defined by
£Q(u) = £[{Q(w)] = F'[Qu)] , (1.7)
and the score function defined by

J() = -~ (fQ)'(u) (1.8)

AP VI % S VU U




to exist for all results presented in this work.
We further define some models for comparing the two samples.

Under Ho: F=G and alternatives close to the null hypothesis in

location and scale we use Parzen's (1980) model for D(u) defined
by

D(U)—u=(1—X){BfoQo(u)+on(U)foQo(U)} , (1.9)

U,-u 0,4=0

o and Y = o
1 1

a model of AQ(u) = QY(u) - Ox(u) , the difference of the quantile

functions. This model will be suggested by Theorem 1.1 as

where 6 = We also compare the two samples by

£.Q, ()8, ()=(uy=u) foQo(U)+(62-01)QO(U)foQo(Q) , (1.10)

Q
which is valid under all location and scale alternatives to HO:F=G.
(u) as D(u) and A

We denote estimators of D(u)and A (u), respectively.

Q Q

Estimators of D(u) and AQ(u) can be obtained using the results
of continuous parameter time series regression ;stimation developed
by Parzen (1961, 1967). A detailed discussion of these estimators
is given in sections 2 and 6 and is essentiallv taken from
Parzen (1979), section 9 and 10, and Parzen (1980).

We define a Brownian bridge or a tied down Weiner process

to be a normal process denoted by
{B(u) , 0 <uc<1}, (1.11)

which has zero mean and covariance kernel

KB(ul,uz) = min (ul,uz) - uu, . (1.12)




Finally, we define the reproducing kerrel Hilbert space (RKHS) of B(u)

to be the space of L2 differentiable functions with inner product

= 9 ¢ ' 1 1
<t,g>, <[ 0 £ (Wdu + SEEIR(R) + TE(Dg(D) . (113

Throughout this work we denote weak convergence of a process

by vk and convergence in distribution by nBu,

1.1.2 Questions to be Addressed

One desires to infer from the samples how the populations for
the two samples differ. The distribution functions F(x) and G(x)
each have, in general, an infinite number of parameters and it is
our task to summarize or characterize the differences in these
distribution functions. The quantile function has advantages in
this regard as remarked in Parzen (1979) and Wilk and Gnanadesikan
(1968).

One explanation of its statistical virtuees is the fact that

= j-1 i
Q(u) X(j) , for T Cu=siy ,

where X(j) is the jth order statistic. The order statistics are the
most universal set of sufficient statistics since all sufficient
statistics are a function of the order statistics.

The problems we address are illustrated by the t-test. If

one assumes the data are normally distributed with o, = o, , one

1
obtains an exact solution (t~test) to a well-posed problem. Of
course, these assumptions are usually only approximately true.

Thus, the t distribution, which gives both a test of Ho: ul - u2

and a confidence interval for u, - Hy s provides exact solutions

1




to approximate problems. If 01 + 02 , we have the Behrens-Fisher
problem, which is usually more realistic and currently has no exact
solution.

The nonparametric problem considered in this dissertation
assumes that the data arenot known te be normally distributed.
One problem is then to choose from a collection of Fo functions
those which best fit the data. Another problem is to develop

techniques to estimate and test hypotheses concerning the parameters

HymHy 0,=0,
8 = m s ¥ = o My T My, and 9y = 0y - These techniques

1 1 -
then provide tests of H : F=G and an estimator, D(u), of D(u).

Through 6(u) - B(u) we provide techniques to determine:
(1) whether the two samples differ in location and scale
parameters for a given fo’ and
(2) whether the assumed density, fo’ can model the data
well. .
We implement and expand some of Parzen's (1979, 1980) results.
In cases where several Fo may model the data, one can compare the
various estimates of 6, ¢, Wy ~ M s and 9, - 01 . When quanti-
tative or gualitative differences exist among the various Fd we

will suggest larger samples for more power, or subject matter based

selection of Fo rather than statistically based selection.

1.2 The Solution

We introduce the solution in this section and give the detailed

implementation of the solution in sections 2.1 through 2.5and 6.2.




The aim of the approach implemented in this work is to simul-
taneously estimate location and scale differences between two
populations. Our approach emphasizes estimators of location and
scale differences that are asymptotically optimal for the same
underlying fo. The approach may also provide diagnostics for

skewness, long tails, bimodality, and estimates for nonconstant

shifts in the various quantiles of a population using techniques
from Parzen (1979). The approach begins with D(u) = F[H-l(u)]
and its raw estimator B(u) = g[ﬁ—l(u)].

Since F(x) = G(x) 1ff H 1(u) = F *(w) = G 1(u) iff D(u) =
F[H-l(u)] = yu, the comparison function B(U) can be used to test

HO: F(x)=G(x) by testing HO: D(u)=u. The asymptotic distribution

of D(u) under HO: F=G, is given by

. EC
AN [D(u)-u] + ( X )¢ B(u) = cB(u)
o

where A = % -+ Ao , 0 < Ao < 1. A proof of this fact is outlined in
Parzen (1980), and essentially given in Pyke and Shorack (1968).

Parzen's (1980) representation
Jﬁ[ﬁ(u)-ul-(l-x)[ef°Q°<u)+¢o°(u)f°Q°(u)1 + cB(u)

is adopted here. 1In essence, this is the result of a linear Taylor
series expansion for D(u) which we discuss in section 2 in
greater detail.

As a result, with Parzen's (1961, 1967) results, we simultan-

eously estimate 6 and ¢ from a commonly assumed fo as

e sttebeiist iSanntenieie. ot ndiad




-1

(1-1) 8 - <foQo’foQo> <foqo’Qo(foQo)>
V <£,0,0Q,(£,0,)7<Q, (£,0,),Q, (£.Q,)>

00 0 OO0

. |:<f°Q°, D(u) - uw> ]
<Q°(f°Q°). D(u) - uw>
where
<f.,f,> - (9 '
AR jp £, (u) £,(u) du+
Le (e, () + 7t (@F, (@)
pl 2 1-q'1 2
and
<f. ,f > = 1lim <f_,f, >
1’72 1’72
p*0 P»q
q-l
Estimators obtained when one uses <f1,f2> ,0<p<q<l ,
Psq

are briefly mentioned in section 2.4 where ;e obtain trimmed or
truncated estimators of 8 and ¢ for the exponential density. Also,
note that the inner product '<f1,£2> exists for many more
density functions than does <f1,f2> p;znce the latter requires that,
for j=1,2» fj(p) +0as p+0, 1. The computational formulas for

5 and & are surprisingly simple for many densities. The
similarities of tests based on é and ; to other tests will be
established in sections 5.1 through 5.4, Table 1 gives S and ;

for several fo densities. Before proceeding to the derivation of

these estimators we will consider a model for the quantile functionms.

o o e e o e B~




]

1

cajdwes pautqudd a4l ur "X JO juel 3y3 s} ¥ :ajoN

' g1 v o1 VIR A11suap arivend)
N PP B N ‘. - » h
;oo s :i:M o +2+zV~ o, suob 2uou
Y - x| ‘1 Cco. ( _I+N Z+zv € -
-— = 3 ——— e ——
1 , fz ux V
L=t JA21peag-taesuy,,
c o ~+z -ﬂ‘Tz urw ~+z|| chwﬂm W —“—.O 2u0uU auou
2 41)S= (%) 3 (= -1 )um(——- ¢ 6
N.: )i T, Ty Ty 1 a €
T+N 121 - Juou ayou
Aygone) (-~ LZ)utrs w w/74=0
N - .
71 1=t (POOK) )
| e1Iuduodxa ajqnop aw  =[({+N) 1 ¥jusrs w uelpap
. w
9 3 =¥
s180 - = uoxo?d
orsior T "
1N,
1ewiou gu- = =) ¢ .w unpIdEM 4Ip URA  1UCFIPDO]
. 1.1
a4 w
ou 1030WT1S] J731S11E1S 1831 aweN
g 03 Sop1STITIS 1S3] OdT13jdweieduo; jedysse() IO diysuoyie(dy ‘eI

- ————

PRV NSRS S

USRI, JUPFRper VY 5

et 2 o




(4-% ==
BT

- (s¢°)

Z ] - [4 _ < < _
Nlﬁ_x_+~vﬂ.lﬁxv 3 (€ QVNMHMﬂN A~+zv ﬁ_aa+2v L

I=¥
a:u:mu_ 4 ~+zv=_=nuﬂ—A~+zv=~_=ﬁu - w mm;.M - 4
4 .
z m
14N =T o
1e13uduodxa ayqnop —Alll.na.lllg:ﬁs_w 801 w m.+~ = 4
x z wu v
| 1= (_i4¢)w

1191801 :-Aawz:_axc\ 21)801 ] L4
L (T+8) /¥ . -

1ewiou A% -Muzg- =

o
3 I0lewl s3]

:

H)} "sq0 X jog=1

2. 1=t
-(1+H)$ ~ w

Juou

auou

Juou

1=}

:w

189}

271339

Aaxn]-1282s a0
Kaypeag-jaesuy

auou

(Airsuap

ueypen 10 Pooy)
2uou

(A3ysuap
UOXODTIN)
auou

ziomi

:ateog

4 031 sO131S71®1S 183] Oyildweieduoy [edFsse() Jo djysuojielay

‘q1

”

\




The quantile functions éx and 6Y can also be plotted to
compare the two samples. These plots and their box plots, as de-
fined in Parzen (1979), give initial indications of skewness, bi-
modality, and differences in location and scale. A model for the

differences at each quantile 1is given in the following theorem.

Theorem 1.1: If {X i=1, ..., m} is a random sample from

1 ;
X=uy
F(x) = Fo( 5 ) and {Yj 3j=1, ..., n} is an independent random
1
X-U
sample from G(x) = Fo( S ), where f(; exists, f°>0 is continuous and tail
2

monotone [see Parzen (1979), p. 116), then, as N + =, such that

m
AN = ¥ > Xo (0 < Xo <1),

A £_Q () [Qy (w) -0y ()~ (uy=h ) =(5,0))Q_ ()] ¥ ¢ BCw),

where c2 = Aocz + (l—Ao) og and B(u) 1is a Brownlan bridge.

1
Proof: From Parzen (1979), since f° is tail monotone, we have

L]

- L
MNCEQ, () (Qy(u)=uy=0,Q_(u)) *(1-X )70, By(w)

as N - », and

@) ¥ -2 % B (W,

-/N(E Q, (1)) (Qy(w)-u 1 B

1-°1Qo
as N + » where Bl(u) and Bz(u) are independent Brownian bridges.

Thus, the independence of 6x and 6Y yields

(e Q () [(Qy (=0 (0= (= )= (0,-0,)Q (W] = Z(w)

b aaki ok ik i ok s eai b kot IR W




where
2(a) = 12 )% o, B,(w) - 2T o, B, (u)
Now, E[(Z(u)] = 0 , since Bl(u) and Bz(u) are zero mean normal
processes. For 0 < uy < 1 and 0 < u, < 1, we have
s Y
cov [Z(ul), Z(u2)1= cov [(l—Ao)'oznz(ul)-Ao clBl(ul) ’

L L
(1-x°) 0,8, (uy)=A 0181(02)]

2 Y 3
E[(l-Ao)osz(ul)Bz(uz)-Ao ol(l-ko)
'0282(ul)Bl(uz)-Aokol(l-Ao)HOZBI(ul)

2
-32(u2)+l00151(u1)31(u2)1

2
E[(l—Ao)ozsz(ul)Bé(u2)1+

2
E[AoolBl(ul)Bl(uz)]

(l-Ao)og cov[Bz(ul),Bz(uz)] +

291 cov(B) (4)),B, (u,)]

2 2
[Xool+(1—x°)02][min(ul,uz)-uluzl .

Since linear combinations of independent Gaussian process are

Gaussian, we have




2(u) = [Aocz

2.k
1 + (1-10)02] B(u) .

(u)

We thus have a model for AQ = QY - Qx . We also emphasize that AQ
seems to be a very interesting and interpretable function since it
quantifies the differences between X and Y at every quantile,

ue (0,I). We will then be able to obtain diagnostics for how the
different quantiles of the poprlations are changed by the treat-

ment. Further, some commonly i:sed diagnostics which are

functionals of AQ = Qy - C, sre 22 - X =f i 4 (u)du and the

1 Q
difference in medians AQ(%)' Furthermore, 1if AQE k, a constant,
then o,=7, and ul#u2 (k = 0 implies w =u,).

This approach will thus provide:

(1) tests of Hy =My
(2) tests of 01 =0,

(3) simultaneous tests for (1) and (2) for several common fo

for several fo ,

for several fo .
for each sample,

(4) estimators for the parameters of (1), (2), and (3),

(5) models for estimating the difference at all quantiles,
AQ(u) s

(6) graphical comparisons of the two samples ,

(7) a basis for theory on similar results for skewed and
bimodal data ,

(8) a basis for theory on similar results using trimmed

estimators, i.e., inner products with 0 <p <u < q < 1.




1.3 Contributions of this Research

We implement and extend the techniques of Parzen (1979, 1980)
by:

(1) giving calculation formulas for 6 and ; for seven
underlying densities;

(2) using the relation of é and & to other linear rank
test statistics to provide finite sample size tests
and parameter estimates based on 5 and & :

(3) providing calculation formulas for the two parameter

exponential distribution for truncated estimates of

6 and ¥ in the two sample problem;

(4) proving the asymptotic normalityof D(u) = [D(ul),

-~ - L

D(uz), vees D(uk)] for fixed {ui, i=1, ..., k};
(5) proving the asymptotic normality of D(u) - D(u) for

fixed {ui, i=1, ..., k} , which we use to select an

underlying fo 5

(6) deriving a model for AQ(u) = QY(u) - Qx(u) » the

differences at each quantile, u ;

giving estimation formulas for My = M and 0y =0

1 1

simultaneously based on QY and Qx H

finding the asymptotic distribution for AQ(u) =

6Y(u) - 6x(u) at fixed u ; and

providing graphical comparison techniques via D(u) - D(u)

and &Q(u) - AQ(u)




R

We emphasize that all the theoretical contributions in this
work are based on a location scale difference of two independent
random samples with an assumed underlying f° family common to both

populations.
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2. STATISTICAL INFERENCE BASED ON D(u), 8, and ¢

In this section we present the basic method for making inferences

about two populations given random samples from each which are in-
dependent. We assume the two populations and samples are as given J

by definitions in section 1.1.1. 1In section 2.1 we outline the

. results of Parzen (1961, 1967) which provide the theory to suggest
A~ A ~ Hy=uy 9,79,
3 the estimators 6, ¢, and D(u) for & = . , ¥ = 5 , and D(u) =
1 1

F[H-l(u)] also defined in sectionm 1.1.1.
In section 2.2 we use these results to obtain the computational
formulas for 8, &, and 6(u) which lead to the relationships given
l earlier (Table la/b, p. 9) forseveraldensityfunctionsfo. In section

2.3 some large sample distribution theory for the estimators ob-

1 tained in section 2.2 is discussed.

Since the methods of section 2.1 through 2.3 do not apply for
all choices of fo’ in section 2.4 we show how we may use truncated
estimators using formula(l.13) for the particular case of the two
parameter exponential fo' Finally, in section 2.5 we describe
some finite sample size distributional results for the estimators

of sections 2.1-2.4,

2.1 Time Series Regression and Preliminaries

Using the definitions in section 1.1.1, Parzen (1980) has

suggested a model for D(u) which we use to obtain estimators of
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5 and D(u). The model is particularly sug-
1 1
gested when 6 and § are near zero, i.e., the remainder terms of a

Taylor series expansion are small. For D(u) = FH-l(u) when 8

and § are small, Parzen (1980) suggests that we may use

1-i. s

D(uw)-u = (1-1)[8 £ Q_(u)+¥Q (u) fOQO(U)]”;‘—,‘—) B(u) .

x-¥y

This model briefly is a Taylor series expansion of Fo about ( p )
1

when 9 and ) are small. A sketch of Parzen's justification for

D(w-u = (1-1)[6 £.Q_ (w+vQ (w) £.Q (W]

is given below.

Derivation of Parzen's Representation for D(u)-u

Since eol = u,-u and 01 (1L +y) = T,y we have

X=U x-ul—ecl

2
o, ) Fo( cl(l+w))

.

Since (1+¢)"1 = 1-w(whenw2 is small) and 8¢ = 0, we have

X=uy
G(x) = F_[( ) (1~¢) - 8]
o ¢
1
X-u X~y
1 1
= F U= - (8 + (oD .
1 1
A linear Taylor series expansion of this representation of G(x)
X-y
about ( 1) gives
%1
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X-Ul X-Ul X-u
)+ E (=) (-8 - v
1 1

1

G(x) = F ( )]

°1

Substituting this in H(x) = AF(x) + (1-1) G(x) gives

X-ul x—ul
H(x) = AF(x)+(1-A)F(x)-(1-X)f°( - ) [B+y( 5 Y]
1 1
x-ul X—U1
= F(x)=-(1-Mf ( 5 Y (8 +y( 7 )]

Letting x = H-l(u) and rearranging terms, yields

H'l(u)-ul H’l(u)-ul
D(u) = u + (I-Vf (—F——) B+y(—F5—)]
1 1
n"l(u)—u1 F-l(u)—u1 -1 -1
Since [f ( Y-f ( )18 and [{F “(u)-H "(u)] ¥ are an order
) 9y o 9,

smaller than 8 and ¥, as 6 and ¥ go to zero we have

. F.l(u)-u1 F-l(u)-ul
| D(u)-u = (1-X)fo(-—71——) C] +w(———o-1‘——)]

= (1-1) foQO(u) [6+y QO(U)}

%

The error term of (lii) B(u) that Parzen suggests is adopted from

Theorem 4.1 of Pyke and Shorack (1968) with the constants of their

Lemma 3.1 and equation 3.7. We give the result we need in Theorem

2.1.

Theorem 2.1: If the conditions of Theorem 4.1 in Pyke and Shorack

(1968) hold and F(x) = G(x) for F and G as defined in section 1.1.1,

then




T ——
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- 1-)
A D-u] ¥ (97 B
[o)

where A = % > AO(O < Ao < 1) as N + » and B(u) is a Brownian bridge.
Proof: Pyke and Shorack (1968) define

Ly = /& [D-dw] = A (FlE W] -F w1},

and show for

LN' (u) = L (v, 1. u<l ,
N — —

B =0,0<u <-§ ,

v, @.S.
t that p(LN, LN) * 0, where p is the uniform metric, and
L
]
LN (u) -+ Lo(u) .

Under HO: F = G, we have

b b

Ly(w = (1-2)) (07 Bi(w) - (1.3 )77 By (),

where Bl(u) and Bz(u) are independent Brownian bridges. As in our

Theorem 1.1, we have

LO(U) = (1 - Xo) {c B(wW} ,

2 -1 -1 -1
where ¢ = A (l-ko) = [Xo(l-ko)] .
Therefore,
(l-lo) l-ko 1y
L (u) = — B(u) = ( ) ° B(u) ,
° x;(1-xo)5 ‘o

Mnatadinics A . sl sl unn it o Ty D et i al ahoa e meih Dde . ae oo o
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and

1-A
0% 3y

/N [D(u) - ul % ¢

A
o

We note that although this error term is onlv shown to he correct when
8 = ¢ = 0, we shall assume that it is aporoximatelv correct for 8 and
¥ close to zero.

That.is, we use the Parzen (1961, 1967) results to obtain
estimates of O and ¥ under Ho: 8 = ¢ = 0 which we assume will be
useful for 6 and ¢ near 0 also. Exactly under what conditions this
is jstified is an open research problem. One can calculate estimatcrs
for all continuous foQo and Qo(foQo) in the RKHS of B(u) (see

section 1) with

<f1,f2

> = 1im <f,,f. > ,
p*0 12 f,q
q+1

where

e [Qer(uyer 1 L
<f1,f2> fp fl(u)fz(u)du + pfl(P)fz(P) + 1_qfl(q)fz(Q) .

Psq
The conditions of Lemma 2.1 are sufficient for the estimation of

8 and ¢ using Parzen (1961, 1967). This gives

a-1 G =zcly
v
where
<foQo’foQo> <foQo'Qo(foQo)>

“Q(£,Q) . £,Q > <Q (£,Q,),Q, (£ Q,)>
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and

<f°Qo,f)(u)-u>
<q (£,Q,),D(u)-u>

as in section 1.2,for a solution to the normal equations

-~

a-v =g
v

The estimators é and @ then give
D(w) = u + (1-0)[8 £.Q (&) + ¥ Q (WEQ (W] ,

using Parzen's model for D(u).

2.2 Calculation of 8, ¢, and D(u)

In this section we give some lemmas useful in calculating I
and g for various £, We then calculate § and & for seven different
f° densities.

We consider here the following fo(x); (- » < x <o, unless

otherwise specified)

2
Normal fo(x) - L e X /2 ’ Fo(x) = ¢(x) .

Y

Logistic f (x) = e*(1 + ex)-2 , F (x) =(1+ &L




- - 1 -

Cauchy £ = L™ s Fo=g+lian i .
£,(x) = % e x<0 , F_(x)= % e*, x<0 ,

Double 1 e %0 1 -x
Exponential =35 s ’ =1 - 3e =0 .

1 s Fo(x) =%(1-x)-1, x<0 ,
"Ansari- £ (x) = 5(1+|x() c 11 -1
Bradley" ° =5+5 (11407 1,20,

1 1 1
"Quartile" (%) = 1, Ixl< 2 TR =g X%
uarti
1 1 1 11
= g =gtx xe (79,
le6x 1 1
= l-Tex» X775
Exponential fo(x) = eix x>0 Fo(x) =1 - e_x, x > 0,
0, x < 0, .= 0, x<0.

The formulas for £ and g require several inner products. The
calculation of these inner products can be simplified for many fo

by using the following lemmas.

Lemma 2.1: 1If foQ° and Qo(foQo) are L, differentiable functions,

2
then
(1) <€£Q,£0> = [1 5 2u)du
o'0o’ 0’0 0 o*

when

2 2

[f Q (p)] (f qQ (1-p)]

(1) 0 = 1im _9%9° = . lim %0 .
p~0 P p0 P

— " I P PR Ty
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1 2
(2)  <Q (£0). Qu(EQ)> = [" [1 - Q_ () (W] du

when

2 2
(Q (p)f Q (p)] [Q (1-p)f Q (1-p)]
(i11) 0 = 1im —2 A = 1lim —2 o 0 ,
p+0 P p+0 P

1 2 1
(3 <£,Q,, Q(f 00> = 7 (WJI “(uwdu - [ I (u)du

when (1) and (ii),

- 1 1 R
(4 <£Q., Dw=~w = ["J (udu - T 121 Jo G

when (1), and

- 1 1 P, M N
(5) <Q (£ Q),D(w)-w> = [ Q (WJ (Wdu-= 1ZlQo‘N+_1”o(ﬁ+—1’

when (ii).

Proof: [Adapted from Parzen (1979, 1980)]

L
(1) By definitionm, Jo(u) = - (foQo) (u) which gives

<foQo’foQo> = ;ig <foQo’foQo>p’q
q+1

2 2
(€ Q (p)] (£ Q (9]
= lim[fq[-J (u)]zdu+ Q0 +—220 )
p0 PO P 1-q
q+1
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when (1).
. (2) Since q (u) = 1/£.Q (w), and
[ (W Q (w]" = Q (W) (£,))" (W) + E,Q (u)Q](u)
= -Q (w)J _(u) + £ Q_(w)q (u)
=1 - QO(U)JO(U) ’
< (£,0.),0,(£,0)> = f, (10, (wJ_(w)1? au
when (ii).

(3) Similarly,

<€_Q,,Q (£,0)> = fo (-3 (w1[1-Q (w)J_(w)]du

1 2 1
= [0 QO(U)JO (u)du-- fo Jo(u)du

when (i) and (ii).

(4) Similarly, since 6(1) = 1 and 6(0) = 0,
<£Q_,0(w-w = [} (-3 (w)14[D(w)-u]

1 1 -
=[5 I (wdu - [T (u)d D(w)

m R
1 1 i
- fO Jo(wdu = o L Yol
i=1
R

o 1 i
recalling that D(u) has jumps Satu =




(5) Also,

< (£.Q,),D(w-w> = [ [1-Q ()3 (w)1d[DCu)-u]

- jol aD(w)-f, czo(u)Jo(u)df:(u)-1+f01 Q, (w)J_(w)du

f Q (wJ (wdu - = E R (N+1> (N+1) :

o

Remark: The tail conditions of Lemma 2.1 essentially are the conditions

needed besides L2 differentiability for fc’Oo and Qo(fooo) to be in the

RKHS of B(u) for p=1-q=0. To make this clear is whyv we include

Lerma 2.1. This lemma is used to show 8and v are linear rank statistics.

Lemma 2.2: If in addition to foQo and Qo(foQo) being L2 differentiable,
we have that fo is.symmetric, then
() <foQ°,Qo(foQo)> = 0

when (1) and (ii) of Lemma 2.1 and

R

- , @
(2) <foQ°,D(u)-u> =T Z N+1

when (i) of Lemma 2.1

Proof: Since fo symmetric is equivalent to foQO(l-—u) = foQo(u) or

Jo(l-u) = -Jo(u) or Qo(l_u) = Qo(u) and Lemma 2.1 holds, we have
(1) <£.0,0 (£0)> = [L1o (3 (wdu-[ I (u)du
0’0’ 0o 070 0 "o o 0 "o

= foli QO(U)JOZ(U) du+J'(;7t Jo(u)du

3
-IO!’ Qo(u)Joz(u)du-fo’Jo(u)du
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and
- 1 PN 1
(2) <f°Qo,D(u)~u> - 121J°(§:T)’ since IO Jo(u)du = 0.

Theorem 2.2: If foQ° and Qo(foQo) are in the RKHS of B(u) with

p=1-q=0, F=G, and fo is symmetric with the tail conditions

of Lemma 2.1, then

R
- 1.2 -1, 1 ¢
(1-2)8 = [[o7I " (wdu] (- 2 1Z1 o N+1)1
L and
N 1 2 -1 1
L (=09 = {f M 1-g_ (w3 w1 2au) 7/ lo (I _(w)du
m R R
1
{ “a % o D )
Proof: Since Lemma 2.land 2.2 give the terms of [ and g, we have
k a-n¢ - g7 g as given in Theorem 2.2.

v

Note that our I for the two sample case is the same as the one
sample I in Parzen (1979) and Eubank (1979). In order to carry out
the estimation of 8 and ¢ as given in the above theorem, we need
foQo(u), Qo(u), and Jo(u) for each density. They are given in Table2 .

Weobtain the results in Table 2 for the normal, logistic,

and Cauchy densities as in Parzen (1979) and Eubank (1979). The

others are also obtained by using

QW) = B M), (£,0 ) (w=E _(F "Lw) or € q_(w=1/0," (W)

or Jo(u) = *(foQo)'(u)

Lk e A.A.(L“.'



2. Densitv-Quantile, Ouantile and Score Functions ,
fo fOQO Qo Jc
-1 2 -1
Ll d -
Normal 1. el (w | ¢ 1(u) o (v
/2m
Logistic u (1l-u) log lTuu 2u-1
1 2 1
Cauchy = sin" (nu) tan[n(u-i)] -sin(2xu)
m
u,u<-l- logZu,u<‘]4, -l,u<l,
2 -2 2
Double 1 1 1
Exponential 1l-u, u > 3 -log2(l-u), u 2y 1, u > 2
2 1 1 -1 < l - < i
Ansari- 2u ,uiz 1--u »u 53 4u,u_2,
Bradley _ .
density 2(1—u)2, u > L —1+l(1-u) 1, u>~l 4(1-u), u >1
_ 2 2 2 2
2 1 1 -1 1 1
| l6u™, u<T o, 16 ¢ ’U<Z -32u,u<-l:,
13 R 13
Quartile 0 ’ u € (apz) ’ U-E) ue(a'l‘)' 0’ UE(‘.,I‘),
d it 2 3 -1 3 3
ensity 16(1-u)“, u >Z %(l-u) , u 32 32(1-u), u >-I:
* -1
Exponential 1 - u log (1l-u) 1
A
i *Not in RKHS of Brownian Bridge process for p = 1 - q = 0.

———

- PO PR T Ve T e PP bAoA ah o PO N o attaadbdesiat.
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Thus, we obtain (1—x)(?) = E-lqg as above.
v

Theorem 2.3: The estimators of 8 and ¢ in

1-A

o.%
NA )
o

D(u)-u=(1-9 Bf_Q_(w)HQ (W) Q (WIH B(u)

are given in Table 3 for the seven densities.

Proof: Eubank (1979) has given I for the normal, logistic and
Cauchy fo. Since the tail conditions hold, we have

(Normal)

<£.0,,£.0> = [ 3, wae ) 157 w1 auf TP o dxm

oo’ oo
and
<f°Q°.Q°(f°Q°)> = 0 since fo is symmetric
1 -1 2
<Q_(£,0.),Q (£, )> = [ {1-[¢ " (W) ] }eu
2 4
= 1-2 f x f(x)dx + f x f(x)dx = 2.
Then,
-1 10
=gy

For g we have

m R
- 1 -1, 1
<f°Q°,D(u)—u> = - o z ¢ (m)
i=]
and
- m R
@ (£,0) D(w-u> =1 - ] (o7hgdp?
i=1
' v l \
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3. Computational Formulas for 6 and ¥
Density (1-1) 6 (1-2) J;
R R

1 1 1 -1,71 ,,2

Normal - = (N+1) > = om CL0 ol
R Ri
< 6 i N+l
Logistic 3 - (EII) ( 7= hlog( Y[2( N+1) ~-1]
3+1r 1-— i
N+1
2 Ri 2 2 R R
£ 2 Lo T —
Cauchy . sin(2r N+1) 5" %m Zsin! 2n( )]tan[n(N+1 2“
R R, R
Double 1 RS S ¢ I : i
Exponential m z stgn[z N+1] m” l0g{2[mln(N+l’ N-i-l)]}
" . R R, R, -, R .
Ansari- 3 i i N 12 i1 1
Bradley” m - min (71 N1 SiEn(5 - N+1) BT )518“(2 ¥+
(—-—) E (~)

"Quartile" %Z N-Il + N+l -i ; 3

Ry < 7(N+1) R, > Z(N+1) Ri$[z(N+1) (D ]

1 m R,

Exponential (Not covered by RKHS Theory) 1+ = 2 log(l - ﬁif)

(Assumes 6 known)

i=1




which yields

m R

" 1 -1,
8 =-= 7 ¢ (=9

m oo N+1

and
m R

~_Ll_ 1 1,112
V=2 2m 121[¢ Sosel

(Logistic) Again, since the tail conditions hold, we have

1 2
<f Qf Q> = fo (2u-1)“du =

(WY

By symmetry of fo’ <f°Qo,Q°(f°Q°)> = 0.

By Eubank (1979),

2
1 u 2 3+
<Q,(£,0),Q,(£.Q))>= [ [1-(2u-1)logy ] “du = <5
Then,
-1 30
2 = 9 .
0 2
34

For g, we have

m R
<f_Q;D(u)-u> = - f (2u-1)d(D(u)-u] = 1 - Z Z (N+1

<Qu(£,0),D(w-uw> = [ ! [1-(Logr') (2u-1) 14 (D (w)-u]

R R
3 (o

m
21 z
m =1 V+l o N+1 ’
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which yields
- m R,

6 i
8 =3-0 1 Gy
. m i=1 N+1
and
m R R R
PR SR | SR SINYPRRIE i
v o= (3+vr2) - iZ=llog[(h.+1)/<1 w1 2T -1 -
(Cauchy) Since the tail conditions hold, we have
_rl 2 _ 1
<f°Q°,f0Qo> = IO sin” (2ru)du = 5
By symmetry of fo, <f°Q°,Qo(f°Qo)> =0
and
=1 1,2, .3
<Qo(foQo),Q°(foQo)> —fo {1 + sin(27u)tann(u - 2), du 5 -
Then,
2 0
1. ) )
0 3 .

For g, we have

- 1 m Ri
<foQoyD(U)"U> = ; Z Sln[ZTr(m)]
i=1
and
- p o Ri Ri 1

<Q°(f0Q°).D(u)-u> =1+ = iZlSin(Z"i'P_l)tanh(ﬁ‘&-_l - E)] .

which yields
R




and

- 9 2 3§ R
V=%~ 5 izlsin[Zn(m)]tan[n (EII - _)]

(Double Exponential)

<£.Q,.f.Q,> = jl’l du+f;( 1) du+lim-—[f o, (P)] +1im-——[f Q, (q)]
pr0 P g1t

=1+ 1limp+ Um (1 - q) =
p>0 q>1
Again, by symmetTy

<f Q Q) (f Q, )> = O+limlpzlog pt 11m~——(l qQ) log2(1 -q) =
pro P p0 1

! 2 1 2
< (£,0,) 10, (£,0,)> = (1@ (w 17du + [y [1-0, (0] dv

+ lim—[plogZp] +11m——[(1—q)1ogZ(1 q)]
poP? o1l

=2 [%(1+log2u) du-21im p-2 lim p = 1
p>0 0

Then,

For g, we have |

£ Q . D(w-uw = [Fd[Dw)-u] + [ (-Dd[D(w)-u] + i p[D(p)-p]
o0 0 ] 0

- lim (l—q)[B(l—q)-(l-Q)]
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Next,
<Qo(foQo),B(u)-u> = [;%1+1032u)d[b(u)-u]+ L:[l+logZ(l—u)]d[6(u)-u]
. + 1imp log (2p)[B(P)-P]
p-0
+ lim { (1-q)log[2(1-p) 1 [D(q)-q]}
1
m R R
1 i i
== iéllog 2[min(§II ,» 1 - EII)]
which yields
m
- 1 1 i
8 == ) sign (5 - T7]
m 0y 2 N+1
and
} . m Ri Ri
v == ] log 2[min(ry » L - EII)]

i=1

("Ansari-Bradley")

1 2 1 2 1 2.2
<£,Q,£Q> = joi(_au) du + j% (4(1-u)]“du + ;iﬁ S [2p°]

+ lim T%— [2(l—q)2]2
el 9

w|r

2
+3=

W&

Again, by symmetry of fo’

1 2 1
QlEG0,) 07 = 0 + Lim @pH2a - 1

1 2,2.1, 1
+ :iT 1:3[2(1-q) ) [i(ija) -1l =0




Now, we have
<Q (f Q),Q (£Q)> =/ lAi(bu-l)zdu + fl[la(l-u)—ll2 du
000 0" 00 0 3
+ 1lim —[(1——)2p 1% + Lim
po P 2P 1

1 1 2
(-1 + 3 I:EIZ(I-q) }

2

Then,

w|e
o

For g, we have

<2,y D(W-w> = [ 4u a(D(w-u] + [} [~4(1-w)14(D(w)-u]

+ 1lim ——[(1- -—)2p l[D(P) -p]
p*O

1 ,.,1 1 2,00

R R R

N+1) min (===, 1 - —/)

_4 T 1
- E sign(2 -

i
N+1’ N+1
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Next,
- > 1 1 -
<Q (£ Q) ,D(u)-u>= )fo Q(w)J _(u)du - fo Q, (w)J_(u)d D(u)
+ 1im 21 - 5527 [D(p)-p]
p0 P P
£ lim A -12(1-) 2 [D(q)-q)
1-q 2(1-q)
q+1
R R
s .4 T 14011
=1+ TsimG - mPGRI-D
i=1
which yields
m R R R
5 = 3 i R SR 1 _ 1
" 1£1min (w1 1~ D sien G- /D
and
R R
- 12 ¢ N4 1 1 g
* ve=3+2 ] Gy o P osten G- mp)
i=1
("Quartile'")
<€ Q,f Q> =[172wdu+ 1im 216)% p* + 11m —116)2(1-% =32
o0’ 0’0 0 o P 1-q 3
p+0 T+ .
By symmetry,
1 2.2, 1.1
<£ Q ,Q (£Q)> =0+ 1im =(16p ) (- —=)=
o 0 [o] (o2 e] 16
pro P P
1 2,1 1
+ lim 14 [16(1-q)"] 16 1-q 0.

q-+1




Next,

<Q°(f°Qo) ,Qo(f°Q°)>= j(;‘ [1-(- -11—6u'1) (-32u) ]Zdu

3/4
f /

1 2
1/4 [l-(u--i')O] du

1 1 -1 2
[y, D10 320-w)17du

1 1 -1 2,2
+ lim p[(" 16)p 16p° ]

p0
1 1 1 2,2
+ lim v [2(32)16(1-q) ]
el 1-q "16 1-q

= 1+0+0=1

Then,
32 -1
= 0
pla]| 3
0 1

For g, we have

- - 9 ~
<foQ°,D(u)-u> = fol -Jo(u)d[D(u)-u] + 11;3 % 16p [D(p)-p]

+ lim =L 16(1-q) 2 [D(q)-q]

1 179
oL i -1y
Y N+1 + N+1
m | Ry<u(N+D) Ri>%(N+1)
\ . )
~
et il - e ———

i ol A




Next,
<«q (£ Q),D(u)-u> = -f “dD(u) - f.} dD(u)
o o0’ 0 3/4

L ioyonto Ly 1 2
+ lim p[D(p) pl( 16) o 16p

p*0

1 = 1 1 2
+ 1lim l_q[D(Q)-QI 16 1-q 16(1-q)

q+1
- - é { 1
Ri [%(N+1),3/4(N+1) ] ,
which ylelds
R R
. i 1
0 = % Z(N+l) + Z(N+1 b
Ri<k(N+1) Ri>3/6(N+1)
and
b=z
m

1
Riz[&(N+1),3/A(N+1)]

(Exponential) Here we use fo(x) = e-x, x > 0, and assume

8 = 0 since
1,2 1 2
<€.Q,.£,Q, Io J (u)du + ;iﬁ ;[fooo(p)]

1 2
+ :iT 1_q[foqo(q)] 2 l+o40=a |

This means we use the model D(u)~u = Qo(foQo). We have
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i andaatiid ol e A A

Qu(£,0,):0, (600> = [ o* [1-Log(1-w) 12 auwr1in [10g(1-p) " (1-p)

p*0

- 2
+ lim —_1_~[log(l—q) l(l—q)]
q1 ¢

=1+0+ 0=1

Next,

< (£,Q.),D(w)-u> = fol[1-1og(1-u)‘l]dﬁ(u)-jol[1+103(1-u)1du

+ 1lim 1 (l—p)log(l-p)-l[B(P)-P]
pro P

+ 1lim L (1-q)log(l-q)-1[5(q)-q1

1
R
1 7 i
=1+= § log (1 - =)
m =1 N+1
Assuming 8 = 0, we have
m R
b = 1 R
b= 1+ Y log(l Nl
i=1
Here, g, = E(X) and g, = E(Y).
0.,-0 a, 9y
Remark: Since ¢ = , we have y + 1 = — . We note — is
% %1 %

the ratio of scale parameters which is often studied by researchers
(for example, the F-test, Siegel-Tukey, Ansari-Bradley, etc. and
more recently by Bhattacharyya (1977)). Thus, the estimators and

tests given here for y also provide results which may be used for
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g

the ratio of scale parameters, ——
1

2.3 Test Statistics and Confidence Intervals

In this section we provide the asymptotic distribution of 6,
¥, and D(u) at fixed u given in Theorem 2.2 and 2.3.
2.3.1 Inferences about 8 and ¢

Parzen (1980) provides the joint asymptotic distribution of 6

and ¢ in the following result. The proof of this fact 1is essen-

tially also given in our method of proof in Theorem 2.5.

Theorem 2.4: If foQ0 and Qo(foQo) are in the RKHS of B(u) with

p=1-4q=0,f=G and 6§ and ¢ are as given in section 2.1, then as

A =

N % -+ Ao (0 < Ao < 1) and N -+ =« , we have

A B, vt e,
v-v

where v = Ao(l—xo) and I is as in section 2.1.

Remark: Statisticlans often define quantiles with other notatious.

For example, define 2, by Z v N (0,1) and P(Z < zu) =1 - % .
2 3_1 o
In terms of the quantile function we define 2z = ¢ (1 - 7) .

[ 1T~

We also denote 2—1 by C = (cij)' Theorem 2.4 gives us the following
confidence intervals, regions,and tests of hypotheses.
Note that the confidence regions are proved correct for & and ¥ zero

although we may still wish to use them when 8 and ¢ are moderate.

— ks P



!
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Corollary 2.1: If fo is the correct density and D(u) is given by (1.9),

then for y = Xo(l-ko), we have

(1) A (1 - a) 100% asymptotic confidence interval for 6

is
C
. 11.%
Gtzﬁ (Ny) ,
2
(2) A (1 ~a) 100% asymptotic confidence interval for ¢
is
c
- 22.%
vtz (Ny) ,

(3) A (1~ a)z 100% joint confidence region for 6 and ¥

is given for fo symmetric by

c
- 11. %
6 * zg (NY )
2
and
c
- 22.%
P o+ ZE (_NY )
2

Corollary 2.2: For D(u) given by (1.9) a test statistic for

Ho: 8 = ¢ =0 {s the quadratic form

L=y (N 2% 2y
v b




Remark: C = :-l = (Cij) was calculated for several fo in the
preceding section and cll and €2 are given in the following table

for convenience.

4. Niagonal Elements of Limiting Covariance Matrix

o 11 22
Normal 1 /2
s ]
Logistic 3 9/ (3+n%)
Cauchy 2 2/5
Double Exponential 1 1
"ansari-Bradley" 3/4 3
"Quartile" 3/32 1
Exponential (assume lnown 1
location
parameter
6 = 0)

If one did not truat the D(u) model, then a nonparametric test
of HO: F=Gor HO: D(u) = y may be constructed from the distribution of

supvﬁ'{D(u)-ulgsup ¢{B(u)|. Durbin (1973) gives expressions for the

distribution of sup/B(u) ! which suggest test statistics which do not
depend on a parametric model for D(u). One may thus use a test basec on
supvﬁ?é(u)-u{ as a diagnostic when comparing twc samples.

Using S(u) and the asymptotic discribution of ; and ; we may

find approximate confidence intervals for D(u) when u is Zixed and




our model for D(u) 1Is correct.

2.3.2 Confidence Intervals for D(u)
From the asymptotic distribution of D(u) given in Theorem 2.5
we may obtain confidence intervals for D(u) at specified u. First,

we give two useful results.

Lemma 2.3: (Brown (1970), Corollary 3.1) For two square integrable functions

fl(u) and fz(u) on 0 <u <1 and in the RKHS of B(u) for p=1-q=0,

BUf," £, (naB [t £, (dB(y) 1= e (-[1E (wdu]

. [fz(y)-f01f2<u)du1dy :

Lemma 2.4: For foQo and Qo(foQo) in the RKHS of B(u) with

p=1-q=0,

Jo(y)
W(y) = ———75—7— ,
1 folJoz(u)du
and
1-Q_(y)J _(y)
Wo(y) = 1° 2 5 ,
IO [1—Q°(u)J0(u)] du
we have

1) [ (ndy =0,

0

(2) f 1 wz(y)dy =0 , and for fo symmetric also »
0

3 [ 1w (U, (y)dy = 0
0 1 2




Proof:

1 -1 2 -1-1
1) W (v)dv [+ 7J “(udu] i (v)dy = 0
1 ‘0 o ‘ 0

f
Jo 0

since J (u) = -J (1 - u).
o )

1 2 -1
) f Ny ody = 1 Teg I (0150 T H-g ()9 () 1dy

0

since

1 1
fo (Q (Wf Q (u)] du

[

fol =0 (1) 1y

1
{Oo(u)fo[Qo(u)]} 0

since QO(EOQO) is in the RKHS of B(u) with p=1-q =20 .

1
[0 (-7, (u)]{1-q_(w)J (u)]du

1, 2 1 2
(/0 J, dw) (] (1-0_(W)J_(u)]"du)

1
(3 jo W) (W, (V)dy =
= 0
since Jo(u) = -Jo(l-u) and Qo(u) = -Qo(l-u)

In the following theorem we give the asymptotic distribution

of D(u) under the null hypothesis, HO: F = G,

Theorem 2.5: If f is symmetric, f Q and O (f QO ) are in the RKHS
—_— o oo 0o 0°n

of B(u) with p =1 - q = 0, the conditions of Theorem 2.1 hold, and

m
F = G, then as N * ~ such that i, = E“*\O(O < \0 - 1), we have

43
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N E(1—\°)B{f 0 ([ W (v)dB(y)
vN [D(uw) - u] X olotWig Wi ly y

o

1
+ no(u)fooo(u)fo wz(y)dB(y))

= Z, (W

which we call "the Brownian bridge representation of D(u)', where

wl(y) and W,(v) are given in Lemma 2.4%.

Proof: By definition of D(u) we have

WD) =n] = W N(L-Y) [ FL) +w (],

where £ () = ¢ ) (w) and () =3 (u)f 0 (u). Also (by definition
1 oto 2 o oo
of ¢ oandd )
(1vs o+ o= 7 e (i) -y ]
-~ . (\ 1 - P A
and
1 . i 1’ . P
(l=) o= kz(y>d[9(> -vl,

where W, and W, are defined in lLemma 2.4 3nd A and ¢ are given in
1 -

Theorem 2... This gives

.ﬁ[ﬁ(u\-ul=f‘(q~f:xl(v)¢[v§(D(v)—v)}+f’(u)A:Tz(y)d[/ﬁ(D(V)‘Y)]

='1[?l/w\u‘(v\*f,(u]Wﬁ(v\]d[fﬁ(D(v)—y)]

o 1




Since fl(u)wl(y)+f2(u)w2'(y) is L, and /ﬁ(D(y)-y)-I; c B(y) ,

1-xo 1
3 ), we have
o

where ¢ = (
AD@)-u] BLE (H] ()48, (@)W, (9)] deB(y)

1 1
= clf, () W, (y)dB(y)+£, () [0, (y)dB()} .

This gives,

- 1-X
AlDw- ol 2 (2*

o
From this representation we are given the asymptotic distribution of

ls(u) .

Remark: Although we state the theorem under HO: F = G, we hope that
for 0y = 8//N and by = /N , i.e., local alternatives, we
may expecta similar result. The argument needed is exemplified in

Lepage (1975), Hajek and $idak (1967), Chapter VI, and in many of

their references but complicated here by the error term.

Corollary 2.3: For the assumptions of Theorem 2.5, a (1 - o) 100%

asymptotic confidence interval for D(u) is

b( (e ? OIS
u) ¢ 2 G f [Qo(u)l[cn*'czon wirs,
2

[¢)
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(£,Q, () f oW, (1B (I + ()£ Q (0] W, (1) dB(y),




2 2
where €1 " fo’vl (y)dy and g9 folwz (y)dy .
Proof: We assume the result of Theorem 2.5 to obtain,

1
1
V[Zl(u)] =c2V{£1(u)[o Wl(y)dB(y)+f2(u)fu WZ(Y)dB(y)}
~c?¢ 1o, (VL] (asy 1+ F )

VI MW, (1B 1)

since fol W, (y)W,(y)dy = 0. Further,
VL[, (4B = £ () daB(61)
- [t o - [ waur’ay
- [, 2oy
since fol'wl(u)du =0 and
V[, (aB(1 = ELf W, (a1
- [ Mty ) = [oh,wdur’ay

= folwzz (y)dy

Note: The values of ¢ and Cos for seven densities are given

inTable 4 (p. 41). The same densities have foQo and Qo given in Table 3 (p. 29).




The distribution for 6(u) will be usedfor eyaluatiﬂg the model of
D(u) and for selecting fo in section 3.

However, we first illustrate estimating 6 and ¢ with
0 <p<uc<gq<1and provide these trimmed estimators for the

exponential distribution.

2.4 Truncated Estimation for the Exponential Distribution

In this section we modify the estimation from 0 < u <1 to
0 <p<u<l=-p<1 for the two parameter exponential distribution.
Since foQo(u) = 1 - u does not satisfy the left tail con-
dition that lim % (foQo)Z(p) exists, we can not estimate 9 using
all 0 < u < ETO The following theorem implements simultaneous
estimation of & and ¢ based on calculating truncated inner products

as defined in formula (1.13) with u truncated tg the interval

0O<p<u<l-p=<l,

Theorem 2.6: For the location and scale exponential density and

0 <p<uc<l-pc<1,if we use Parzen's D(u)-u representation, we

have

a-n¢ =1ty

¥

where

I = (°1j) and g = (g,),
and

- 1P
11 p '




= -LTl -
912 %% 5 log (1 - p),

5,y - %R log®(1-p) + (1~p) log (1-p) - p log p ,

1op - . L MR
8y =5 D) +D(-p) ~ = Gy elp, 1-pD - 1,
and
1 #Ri 1 Ri ~ 1-
8 "3 G elp, 1-pl)+ 2 Rz Log(1- -D(p)=F Llog(l-p)

{ .
ﬁ;IE[P,I—P]

-D(1 - p) log p + log p,
which are all calculable from the data and p.

Proof: Parzen (1979, 1980) gives reasons for using 0 < pP<uc<l-p

< 1. Thus, we have

- o [ 1P, 2 1 2
o1 <f°Q°,f°Q°>p - Ip Jo (u)du + p(foQo) $:))

1 2
1o (100 @

2
-y 1-p + (1-p)
P p

2
p - p s )’
P

- 1P
P
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Also,
1-p ; -1
= = <£ = (-1)[1-log(l-u) ~]du
9, =912 <£ Q9 (E Q> [P (1-log
p,l=pP
- 2 -1
+%(l-p)zlos(1-p) l+%p logfp )
i dy=-1+2
= [ plog 7 dy-142p
a-p’
-5 log(l-p)-p log ?
- -(L+3§2)(1-p)1og(1-p)
.- liﬂ log (1-p) x
Next,

Tyy ™ <Q, () foQO(u) s Q (W foQo(u) >

£4

12 - 2 1, 2-12
. jpl-P[l-log(l-u) 5“du+% Log? (1-p) "L (1-p) "+ (L0g" P

2
f 1~pr {1+log(l-u)] du + i-l--;-)l’--)--—log (1-p) + p log P,

where

? 1- ~ 1- P .
fp [l+log(l-u)]2du - fpl Pldu+;fp log u du

- 2
P(1+108 y)dy = [,

. 1- 2
+ 'pL Plog' u du

v N \\

e b i 4 s Sl oo .



= 1-2p + 2[(1-p)log(l-p)-1+p-p log p+p]
+[(1-p) 10g® (1-p) - (1-p) Log(1-p)

2
+1-p-p log p+p log p-p]
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2
= (1-p)log? (1-p)+(1-p) log(l-p)~p log’p-p log p-

Combining the above expressions yields

Q

2 = l;z log® (1-p)+(1-p) Log(1-p)~p log p -

For g , we have

g, = <€.Q_,D(u)-u> - [ PI-T ) 1A IDw)-ul+ 2 £.0, () [D(p)-p]

pPsl-p
1 -
+ ° foQo(l-p) [D(1-p)-1+p]

= [, Pau- [ 7Panq)+ LRI (p)-p14D(1-p)-14p
1,0 1-p - -
= (1-2p)~ ;[#E;It[p.l-p]]+ 5 D(p)-1+p+D(1-p)-1+p

1-p o, . 1N
" D(p)+D(1-p)-1- ;-{#E;I elp,1-pl} .

Finally,

8y = Qu(E,Q ) Dw-w>_

,l'P




-y — . j_——-m

51
= £, P(1+10g(1-w) 14 [D(w)-ul+ ZH(1-p) 1og (1-p) [D(p)-p]
+ :pﬂ log p [D(1-p)-1l+p]
R R
1,1 1 - Lyo(1-
-= [fl‘me[p,l pll+ = Rf_ log(l N+l) (1-2p)
g T elps1-p]
- fpl‘plog u du—lgg-log(l-p)D(p)
- (log p)D(1-p)+(1-p)log(l-p)+(1l-p)log p
1 Ri 1 Ri 1i-p A
- = e - = -t - -
Siagirele,1-p11+ 2 . Llog(1- gp)+log p- = log(1-p)D(p)
;&f[p,l-p]
- log p D(1-p) .
F Corollary 2.4: For the assumptions of Theorem 2.5 and with p < gl., the
! results of Theorem 2.6 for g simplify to

1 Ry
§ =-landg, =1+=2 Zlog(l-m .

ii__ elp,1-p]
N+1

R “«

i N Y ~
Proof: Since p < L, we have § Sgop Sy for all 4, D()=0, D(l-p)=l,

R

and (#;‘1—11' elp,1-p]) = m, chus giving g, and g, as desired.
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One may still use all of the data when using this corollary and
its estimates of 8 and ¢. The asymptotic approximations are obtained

by replacing all <f1,f2> with <f1,f2>P q although the distributions

may not hold. We also note that the left tail is where the tail con-
dition is not satisfied and that one may desire to use 0 < p <u <1

as a basis for the estimation with this density. Other than the

corollary, we offer no choice for p at this time. A topic of further

research is to choose p to minimize a criteria such as variance or

mean square error of 6 and y.
In section 2.5 we give some remarks on some finite sample

size distributions for 8 and ¥ for 0 < u < 1.

A a

2.5 Finite Sample Distriliations of € and w

In this section we discuss finite sample size distributions of
é and @. These are obviously needed when n and m are not large.
They would also be very useful in seeing how large n and m will
need to be in order to use the asymptotic results.

First, under HO: F = G we know that each possible ordering of
the {Xi} and {Yi} in the combined sample is equally likely. One
may thus enumerate all possible rankings and record é, &, B(u), and
6(u) for each ordering. This yields the complete distributions
under Ho.

Under Ha: 8 ¥ 0 or ¢ # 0 the rankings are not equally

likely and the problem is more complex. We must: (a) find {it,

(b) simulate 1it, or (c) approximate it. This is a topic for

further research.
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Another source for the finite sample size distributions of 6
and & arises from the fact that they are often simply linear
transformations (which are monotonic) of classical linear rank
statistics which often already have finite sample size tables
available. For our use we merely take the appropriate linear
transformation of the tabled critical values using the following
theorem.

Theorem 2.7: If é(or &) is a linear transformation of
T= ? c

i
i=1 - -
ble, then these tables easily yield percentile tables for 6(or ¥).

a(R,) and finite sample tables of percentiles for T are availa-

Proof: Table 1(p.9)gives values of a and b for various linear rank
test statistics T which have tables available, such that a 6 + b = T,

Clearly,

a = P(T

|v

ta) = P(a + b > ta)

P(6 > a l(c, - b)) .

If ay+b =T, we have

=]
[}

B(T > t) = P(¥ > a (£, = b))

Theorem 2.8: For fo symmetric, an approximate a level finite
sample size test for the simultaneous HO: 8 = ¢ =0 1is given

from a size a

1 test of HO: 8 = 0 and size a, test of HO: v =0

2
=1« /1l-a

where al = ay

T SR S ST Sy § . e




Proof: Under Ho' P(rej.soz 2 =) = 1y - P(rej,Ho: ym )= 3 =

2
1-vl-23a. Then,
P(rej. 9 = 0Qorrej. v =0) = 2(L = vl =a)

- P(rej. H: @ = ¢ and rej. H: ¢ = 0 .

Since fo is symmetric, 9 and ¥ are asymptotically independent, so

P(rej. Ho: 8 = 0 and rej. HO: Yy = Q) = (1 -1~ a)2 .
P(rej. HO: g mpml) =2 «2vl-a-1+2vl=-0a-=(1l-a)

as desired.

These methods for testing Ho: F=G are based upon linear rank
statistics, as the test statiscics are functions of linear rank
statistics with score functions determined by the assumed model fo.

In order to model the data and to obtain more accurate and interpretable
tests and estimators, we will develop methods to determine which of

several fo's best fit the data. We begin this development in the

next secction.
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3. MODEL SELECTION

In this section we begin developing criteria to select a model
for D(u). For example, in ordinary regression analysis one often
makes a choice among mocdels based on R2 or predictability of the
dependent variable or interpretability of the coefficients of the
independent variables. Such criteria may be developed for the

approach we take in the two sample problem.as given below, e.g. Theorem

3.2. 1In particular, we will develop criteria for determining whether
fo models the data adequately or whether fo and a location parameter or
scale parameter difference adequately models the data, B(u). In this
case, the difference between the predicted and the observed values is

‘ 6(u) - B(u), a stochastic process for ue (0,1). We state the

1 asymptotic distribution theory for B(U) - B(U) in section 3.1 and

suggest some measures of fit for the various fo'densities in the

results of section 3.2. It is the measure of distance between B(u)

and ﬁ(u) that will allow one to choose fo which best models the

data.

3.1 The Asymptotic Distribution of D(u) - D(u) under Ho

We develop this distribution as follows:
(1) From Pyke and Shorack (1968) and our Theorem 2.1 we have,

under H ,
o

- 1-A
A bW - w3 (5% 8.
(o]




(¥
N

-~

{2) Using section 2.3, Thecrem 2.5, we will have, under Ho,

o

',-4

N [6(u) - u] Z, (w,
whaere Zl(u) is a zaro mean normal process

(3) Then, under Ho,

AD(w)=- u] - /F [D(w) - ul = /N [D(w) - D(w)],

and we will show, under Ho,

N - L 1= i
MN(D(W-D(w)] * Z(w) = 2, (w)=(5—)" B(w) ,
o

where Z(u) is a known O mean normal process given fo.

One way to characterize Z(u) is directly from ﬁ(u) and 5(u).
That is, 6(u) is a functional of B(u) and we know the asymptotic dis-
tribution of 6(9). Perhaps a more elegant way to study Z(u) is to use
the Brownian bridge representation of fﬁ[ﬁ(u)-u] and /ﬁ[ﬁ(u)-u]
by atudying Zl(u) - ¢ B(u). These arguments are illustrated in

the following theorem, for F=G and fo symmetric.

Theorem 3.1: Under the conditions of theorem 2.5, we have

A (D) - D(W] % z),

where Z(u) is a 0 mean normal process with covariance kernel for

0 <u, <uyy, <1

1-"2
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1-2 f Q (u)f 0 (u,)
2
K (u,0, = () [u (1-u,) - 221 00
27172 )‘o 1 2 1J 2(u)du
0 o
-Qo(ul)foQo(ul)Qo(uz)foQo(uz) :
5 .
foH1-a_ ()3 () dy
g 1A,y
Proof: Let ¢ = (=3 ) . Then, as in Theorem 2.5,
(o]
- 1 -
ANID(W)- u] = [J1£,Q (W, (y)+Q_ (W) £ _Q_ (W)W, () 1IN (D(y)-y) ]

and, (3.1)

DW= ul = [T (v < dAOE-], (3.2)
where

Iy v = 1,y<u,
= 0,y >u
Subtracting (3.2) from (3.1), we have
/ﬁ[ﬁ(u)-fi(u)]=f01[fl(u)Wl(y)+f2(u)w2(y)-Iu(yiu)]d[/ﬁ(f)(y)-y)]

ECL}[fl(u)wl(y)+fz(u)wz(y)—ru(ygp)]dn(y)
=c[£1.(0) [V, (5)dB(y)+E, () 10, (y)dB(y) =B (w)] -
Thus, the asymptotic mean of /ﬁ[ﬁ(u) - B(U)] is

E(Z(wi= cf | ELf, W, ()dB(y)]

+ e, () Bl W, (y)dB(] - e E[B(w)]




. c 1
since Nl(v)dv = fO Wz(v)dv = 0. lLetting 0 - u < u, <

we have

3

i " ) A 2N T
L”VIL(U]).A(U?)] = h{[ll(ul\jo hl(\)dB(V\

+ f:(ul)fnlwl(v)dB(v)—R(ul)]

.1
’[fl(u7)j0 Wl(y)dﬂ(v\

+ 0] 1L (DB -Bu )

2 1. 2
= cTLE () (uE[f W) ()dB(y)]

1
E[B(uz)f0 W, (v)dB(Y) f, (u))

+

1 2
fz(ufﬁz(uz)E[fo W, (y)dB(y)]

1
s[s(uz)[o Wy (y)dB(y) £, (u))

1
fl(uz)E[B(ul)fo W, (y)dB(y)]

1
fz(uz)E[B(ul)fo W, (y)dB(y) J+u, (1-u))}

» fl(ul)fl(uz) fz(ul)fZ(UZ)
= ol ug(lmuy)+ =9 1 3
fo 3,5 (w)du fo [1-Q_(w)J (u)]) du

fl(ul)fl(uz) fz(ul)fz(uz)

Joh Fwau [ Hi-qw)s_(w1%au

] fl(uz)fl(ul) i fg(u2)f2(ul)

)
folt Fwdu [ H1-q, (I (w)]du




t1,

2 l(ul>f1(u2) fz(ul)fz(u:) .
= ¢ {ul(l-u,)- 13 - —
2 3 (wdu fyx1-q (w3 (w1 du

o

- Kz(ul,uz),

since fl(u) = foQo(U) and fz(u) = Qo(u)foQo(U)-

Corollarvy 3.1: For the assumptions of Theorem 3.1, gf(u,,uz,. .,uk)',

D(w=(D(y)),...,D(u )], and D(w=[Dlu),...,D(w) ], we nave

y— = = D -
N D -2 N QDY
where I, = (diJ), cij - Kz(ui,uj), and Jk denotes the multivariate

normal distribution.

Now, for u = {u,,u,,...,uk} we use

A -

N Dw - dwl Ty (0, 5,

) as above under the assumptions that £ _ is symmetric

where e T (Jij
depends on the underlying z,

and 3 and , are ""small". YNote that :k

In essence, by studying D(ui) - D(ui) for u, = s
i=1, , N, we studv the residuals of a regression model. One

pay further studv the application of classical methods for analysis

of residuals in regression analysis o these residuals.

One x2ay then determine the quantiles, g, wnere D(u) fits
the data well and where it fits the data badly. The main use Zor
the distribution of D(u) - D(u) is as an indicator of how well

f densitv will model the data, D(u). We give some

an underlving g,
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methods for determining the fit of D(u) to D(u) in the next section.

3.2 Some Measures of Fit

From the distribution theory for é(g) - é(g) we may devise
test statistics, whose distributions will provide a test of the
location scale model with fo specified as the underlying family.
Computing these values for several hypothesized fo families will
allow us to choose the most appropriate fo for modelling the data
as a local location and scale difference. This also may indicate a
location scale model is not viable or that 3 and ¥ are too large,
if we determine é(g) does not fit é(g) within chosen limits.

We may accept 6(u) as an adequate description of the data
provided it matches b(u) at {ui, i=1, ..., k} where the uy
are fixed at some particular percentiles of interest, in the sense

of Eubank (1979). Another set of u, of interest may be the data

i

points, i.e., u i=1, ..., N.

= 1.
i N+l
Theorem 3.2: If the conditions of Theorem 3.1 hold, then a measure
of the fit of D(u) to D(u) is

2 - - ' -1 . - D .2
§,7(w = NY[D(W-D(w]' § [Dw-D(w)] * x° (k)
k

2
where X (k) denotes the central chi-square distribution with

k d.f.

Proof: Assuming Theorem 3.1 results, this is a standard

application of the distribution of quadratic forms of normally

- amcdiman o e - et e ———




distributed vectors. The degrees of freedom depends on the number
of uy chosen, 1i.e. {ui; i=1, ..., k}

We may also choose which of the fo seem to model the data well
by calculating Fisher's extension of Mahalanobis' distance as

defined in Kshirsagar (1972). That is, we use

- - -1 - - !
5@ =(Ny[Dw-D(w 'L} DW-Dw

as a standardized distance measure of D(u)-D(u) for each fo.
We choose the fo which yields the smallest GD(g) as that fo which hest
models D(u) Ly D(u). Eubank (1979) gives some indication of

optimal uy values to choose for each fo.
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4. DATA ANALYTIC COMPAT.SONS WITH OTHER APPROACHES

In this section, we analyze three data sets from the literature.
The kneecap data in section 4.1 will illustrate what information our
methods provide when we fail to reject Ho: F=G. The rat data in
section 4.2 illustrates a rejection of Ho due mainly to the location
. difference and provides some interesting_comparisons with other
methods. The coronary heart disease data sets in section 4.3 also

illustrate rejection of Ho’ but the fit of the model suggests

further analysis. We only analyze the marginal distributions of
the two bivariate components of these coronary heart disease data.
l We would like to thank David Scott for his kindness in sending us

{ a listing of his unpublished coronary heart disease data for

analysis and comparison.

4.1 The Kneecap Data in Switzer (1976)

Switzer (1976) analyzes two sample data with his techniques.
The data set 1s given in his Table 1 as right kneecap congruence
angles in degrees for 40 male subjects and 40 female subjects. We
know the data was supplied by R. G. Miller, but do not know the
questions it was gathered to answer. Consequently, any
analysis is limited.

Switzer's analysis gives 94.5% confidence bands on :o-c'lr.

The figure (Switzer's Figure 1) appears linear, where the bands

are not infinite, and suggests a location scale model for the
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differences between male and female right congruence kneecap angles.
Wilk and Gnanadesikan (1968)have named a plot of q versus G-'l [F(q))
a Q-Q plot and pointed out that linearity means Y is a location
scale transform of X in distribution. Our é and & will estimate
this relationship. Switzer also gives 94.5% confidence sets for

. -1,-5
max [t (q)-q], min [t (q)-q], and (-5+10) [ 7 [t (u)-uldu
-10,-5 °© -10,-5 © -10 "o

as [-5,12), [-7,8], and [-5.9,10.1]. He points out that these were
obtained for a limited range and for Smirnov's confidence procedure
only. Otherwise finding such sets is much more difficult. Switzer

estimates 6§ in

(a) to(w) =+ 868 (b) to(w) = 2w + 8
for three different confidence procedures to obtain the results below.

Procedure Median Quantile Smirnov
(a) -5,7 -5,11 -2,8

(b) 4,16 5,21 12,14

These models, (a) and (b), are special cases of a general location
scale difference between X and Y. He regards the short confidence
interval for 6 in (b), from a Smirnov based procedure, as in-
dicative of 2 being a bad value of the slope to fit these data and
suggests fitting general parameters.

Switzer then parametrizes to(w) as follows:

(a) )= (1 +X)w+b

(b)

to(w
tfw) = w+8/(1 + ), 2,6 >0

- ) : : 2 . . it TN i R e J

B ORI VN~ ST a " .

- o



In (a) the treatment effect increases with w and in (b) the treatment
effect decreases as w increases. Swit_or then reports joint con-
fidence intervals for 8 and X in models as given in his Figure 2.

In the Parzen approach we hypothesize a general location scale

PR g,-0

5 and § = 5
1 1

obtaining qualitatively similar models to (a) and (b). Since we

model and allow 6 = to be positive or negative

assume a location and scale model for G and F, we have

G'lr(u)

téw)

Wy + 0, QOIF(w)]

w=y

1

uy + 9, QOIFO( A )]

M2 o] o

[
Pt

“1
-+ (1L +9¢) w0,
9

where

u

So, Switzer's 8 in model (a) is My = ;l and Switzer's \ is our ¢,
1

except that our Y can be negative also. We add the assumption that

the distributions of Y and X are of the same family, Fo.
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Our analysis of Switzer's kneecap data yields the following

results. A comparison of the quantile functionms, QY and 6x, in
Figure A suggests u, > My and g, < o, or 8 >0, ¢ <0.
Three choices of f0 yield the following estimates.
- _— . -_ p values
fo 8 YV (8) Y YV () for Ho: 8=y=0
Normal .206 .233 -.134 .158 .46
Logistic .400 .387 -.214 .187 .31
Cauchy .145 .316 -.100 .141 .70

So, regardless of fo we fail to reject Ho and further remark é
and @ are all within two standard deviations of zero.
A quick comparison of 6(u) - a(u) graphs in Figure B
gives an indication that the logistic density may fit the data
best with 5 rising faster than 5 in all three cases. This indicates

F /G = f/g > 1 at those quantiles. The tests and estimates of

section 3 have not been implemented in the computer program yet.

4,2 Doksum and Sievers (1976) Rat Data

These authors have also developed techniques for estimating a

general function t(x) where F(x) = G[ x + t(x)], or t(x) = G-lF(x)-x.

In fact, Doksum (1974) has developed the asymptotic distribution of
. R
t(x) = G "F(x) -x. The questions of interest in their paper for the

two sample problem are

65
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FIGURE A. Quantile Functions for Female and Male Kneecap Data
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FIGURE B. Graphs of D(u) and D(u) versus u for the Kncecap Data
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(1) 1ls the treatment beneficial for all the members of the
population, i.e., is t(x) > 0 for all x?
(11) 1If not, for which part of the population is the treatment
beneficial, {.e., what is {(x: t(x) > 0} ?
(iii) Does a shift model hold, i.e., is t(x) = 6, for some 8
and all x?
(iv) 1If not, does a shift-gscale model hold, i.e., is

t(x) = a + Bx, for some a and 8 and for all x ?

All these are answered by giving a confidence band , [t*(x),t*(x)],
for t{x) simultaneously for all x.
Doksum and Sievers develop ''nonparametric" confidence bands

by inverting a distribution free Kolmogorov-Smirnov test statistic

for Ho: F=G. This is their S-band. They give an approximate

weighted band (W-band) tased on

wN = mk sup lféll:giﬁll
p{H(x)}
where y(t) = [t(l-t)]% . They remark that this ¢ maximizes the

minimum power against H,: F-G > § for some § > 0. They give a

1

third nonparametric confidence band (R-band) based on

R, = o sup [Fe-6(x) |

H(x)
the Renyi statistic. The authors present some tables showing why
they prefer the W-band to the R-band or S-band except when small

quantiles are of interest., Finally, when one is given a location
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scale model they give a confidence band from order statistics called
the O-band. They remark that considerable gain in efficiency is
possible with H normal for the 0O-band over the other bands. In the

Parzen approach the A  model is based on the order statistics, Q.

Q

Their example consists of a control group of m = 23 rats and

a group of n = 22 rats subjected to one component of Califormia
smog, ozone. The weight gain was measured for each rat afﬁer seven
(7) days in their control or treatment environment. Their

Figure 2, aplot of the S-bands, gives six (6) interesting con-
clusions. They are:

(1) Ozone reduces average weight gain.

(2) Large weight gains are made even larger.

(3) Weight gain is reduced significantly for control
weight x < 22.5

(4) Since a horizontal line fits through .the S-bands, we
can not reject a shift model.

(5) With a possible outlier left out,g appears more linear
and thus 0-bands could be used which also do not reject
a shift model.

(6) They remark that (2) and (3) are strongly suggested and
perhaps a larger N would allow the shift model to be
rejected.

The Parzen approach suggests differences in scale and location

by observation of the two groups quantile box plots (Figure C) when the

suspected outlier is included, and a lesser difference in location
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FIGURE C. (Quantile Functions for Control and

Ozone Rat Data (with outlier)
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with no difference in scale when the "outlier" is deleted.

Graphical comparisons of the quantile functions for each group
suggests a lowering of location from “22.5 to 11 with exaggerated

loss at lower quantiles and much less exaggerated gain at upper

quantiles.
% Order
Statistics X3 XS X8 xlS X17 X19 x22
éY 15.4 17.7 21.4 26 26.6 27 .4 '38.4
éx -12.9 -9 6.6 15.5 17.9 28.2 54.6
AQ 8.3 26.7  14.8 10.5 8.7 -8 -16.2

{ This leads us to remark that t actually levels off at less than 20
at the upper quantiles of x while it goes much below -20 at the

lower quantiles of x until the supposed outlier is encountered.

PN

With this reinterpretation of their t one would agree that the two
approaches seem quite consistent, although we do not report a
confidence band for 4 _ in this table, see Theorem 6.2.

Q

Continuing with the Parzen approach, we obtain estimates of

U, -u 3.-0
b= and § = ~—-L1 for the following f families with the
o, 9, o
"outlier" included:
R Ml . —— P Values
fo 8 YV(8) b v V(p) for H_: 8=y =0
Normal - 687 .298 .396 L211 012
Logistic -1.531 517 .503 .249 .002

Cauchy ~-1.789a L4222 .185 .189 .00008




All . ara within 2o of J except the logistic vhich is borderiine,

v

and all 5 are outside 2:; of 0. 8o, the two samples differ
significantly in location and perhaps in scale if we assume the
logistic fo.

Further analysis was done omitting the "outlier" with similar

but slightly more revealing results. The quantile functions again

suggest more extreme shifts in the lower quantiles.

u .1 .3 .5 .7 .3 .9

(V%)
wn
()
[«
~N
(183
~3
.

&~
"~
o
to

Q Control 15.8 20.5 2
Q Treatmeat ~14.3 0.1 11.1 15.6 19.4  36.8

AQ -30.1 -20.% -12.4 -10.6 -8.0

~4

We also remark that if the -16.9 of the control group was an
outlier then perhaps the 54.6 of the ozone group is an "outlier"

also. One might conjecture by throwing out more of the tail behavior

in these data that the normal D would be the best fitting D(u)
model. Examining the D(u)>D(u) graphs (Figures D/E), seem:= to indicate the
Cauchy fo does well with the outlier in and the logistic fo does

well with the outlier left out. We would rather accept the extreme

behavior of these rats weight gains unless some explanation could be

given as to the cause of an arror in the measurements resulting in an
outiier, We also report the estimates of 2 and » with the "outlier”

left out. Then, (X,-X,)/S; = (11.01 - 24.19)/6.68 = -1.97 and

(S._,-Sl)/S1 = (19.02 - 6.88)/h.68 = 1.35
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_FIUURE D. Graphs of ND(u) and D(u) for Rat Data with the Outlier
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w

W o

:o :5 8 :w for H : z=.=0
Normal - .31 .30 .556 .213 .5007
Logistic =-1.73 .52 .699 .25 .30009
Cauchv -1.75 <43 .34 .19 .2C01

Now, without the one data point all 3 are bevond 2¢; of 0 and onlv the

Cauchy ¥ is within 12 . Either the data are distributed Cauchv ard

the samples differ in location or the data differ in location and
scale and are distributed logistic or normal or some unknown other

possibility. In either case it appears the location difference is

dominant, since 9, > 'yi.

We also note that deleting the one possibie outlier did not

arfect the 7. or I very much, dut did affect tae logisctic

and normal < and 4. This points out the robustness of the Cauchv

nodel.

4.3 Coronarv Heart Disease Data in Scott, ot al. (1978)

Javid Scott of Rice Universitv oresented a seminar at Texas
A&M where he analvzed, for two groups of patients, measuras of
nlasma =rvglvcerides and cholesterol. The aim of our analvsis Is =o
examine their ralation =o coronary heart disease. In the control
zroup we nhave m = 31 patievts -vith no aistorv of coronary heart
iisease and in the treatment zroup we qave n = 320 satients with 1

Niscory of coranarv heart Jdisease [C.4.D.). The question is "How do

St

the =wo gzroups differ in trvglvcerides and cholestarol levels?




Scort's aralvsis estimatecd the Yivariace density Zunctions of =2ach
group and graphically compared them. Although thera is a Parzen
bivariate quancile approach in the making, we only analvze the
marzinal quantile functions of the two groups at this time.

First, we examine the trvglycerides. Both groups have similarly
shaped quantile functions (Figure 7) indicating the distributions
may be skawed to the right. The C.H.D. group's tryglrcerides tend
to be higher but also spread over the non C.H.D. group's
tryglycerides for approximately the lower quartile.

On examining 5 and ; we see the predominant difference is

clearly ashift in location rather than scale.

o values
for Ho: Jmym)

“

f 3 S v
o] 2 J

Normal 441 .15 .CC6 11 014

Logistic .797 .26 -.004 .13 .009

Cauchy L431 .21 -.013 .09 .013

dere D(u) “or the logistic seems =0 match D(u) the best (Figure G).

The descriptive AQ

since La(u) increases with u and ¥ ° 0.

again suggests a skewad distribution for fo,

u .125 .25 .5 .75 .875
Zor non CHD 32 91 120 160 195

for CHD 91 115 150 213 284

-t O 4D

| Since :zhe guantile functions zive an indication of skewness, there

should be an fo which would zive more afficient estimates of 3 and ¥.
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FIGURE F. Quantile Functions for Triglycerides Data
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CLOCRE 6L Graphs of D(u) and D(u) Versus u tor Triglycerides Data
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"e now examine -he zarginal iistributions of cholesterol levels
for each group. The quantile functions (Tigure H) are again similar
in shape but the C.H.D. group does have a longer tail suggested and is

shifted higher suggesting 3 > 0.

- . » values i
fo 3 :; " 3; for Ho: 3=y=Q
Normal .51 .15 -.03 .11 .003
Logistic .87 .2 -.05 .13 ‘ .004
Cauchy .44 .21 -.007 .10 117

We conciude cholesterol levels differ in location only, regardless

of which of the three foareassumed. For this variable A_ is

Q
much more consistent.
a .1 .2 3 7 .3 9
0 C.H.D. 158 180 191 236 248 267

non C.H.D. 150.5 161 169.5 208.5 222 239

;Q 17.5 19 21.5 27.5 26 28
We also remark that the zraphs of D(u)-D(u)(Figure 1) suggest the
logistic fo may model thesa da:ia well.

4.4 Remarks on Examples

From these three example data sets we see that the quantile
approach agrees witl results of octher authors' aonparametric techniques.
Ye agree In accepting ¥ as in Switzer's data (section +.l1). We also

agree in rejecting Ho as in Doksum and Sievers' data




FIGURE H. Quantile Functions for Cholesterol Data
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(section 4.2). Also in section 4.2, Parzen's technique seems to
indicate the difference of the two groups is best explained by

both location and scale shifts rather than just a location shift

as it seems Doksum and Sievers may have believed when the supposed
outlier is thrown out. When the data point is kept in we best

fit the differences with the Cauchy fo and a location shift

similar to Doksum and Sievers results. At any rate the two approaches
partially agree and partially disagree. The Parzen approach also
models the data and gives some alternate explanation of what may be
going on . in these two groups of data. This points out how crucial
the assumption of that data point being an outlier can be. And
finally, in section 4.3 (David Scott's data) we see we can

;reject Ho with various null families quite consistently, yet be

led through the graphical techniques to alternate explanations
beyond the analysis performed. That is, we are led toconsider some
f0 for our 6 estimator which are skewed. Although our approach

may ncw test HO: 8 =g =0 or F =0 and estimate 6 and ¢ for several
Eo, some skewed or short tailed densities would also be of interest

in modelling some data.




5. OVERVIEW OF THE LITERATURE ON NONPARAMETRIC
ESTIMATION AND TESTING OF LOCATION AND

SCALE PARAMETERS

The nonparametric estimation of location parameters was started
by Hodges and Lehmann (1963). Sen (1966) has extended this technique
to scale parameters.

In the decade of the 1970's researchers developed simultaneous
estimates of both location and scale parameters. This section re-
views the relation of some widely used location and scale tests

with estimators in the location and scale model for D(u).
5.1 Location Tests -

5.1.1 Linear Rank Tests and 6

Linear rank statistics are of the form

a(i,:\‘!i) ’

w
[}
e~z

i=1

where a is an arbitrary function of i and RNi' is a relative rank
of the X sample. S is a simple linear rank statistic 1if
N
S = izl c; a(Ry))

Many of the statistics for the two sample problem that have been

developed are simple linear rank statistics.
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(i) The Van der Waerden test statistic is

R

J (—1—) = - mé

T = L o W ,

1

W ~g

i
-1 -
where Jo(u) = % "(u) and 8 is based on the N(0,1) fo.
This was developed by Van der Waerden (1952) and is asymptotically
equivalent to the Fisher-Yates-Terry-Hoeffding normal scores test

where Jo(ui) is replaced by E[Jo(ui)], Hajek and Sidak (1967).

(ii) The Wilcoxon test statistic [Wilcoxon (1945), Mann and

Whitney (1947)] is

for 8 based on the logistic fo and Qo given in Parzen (1979).

(iii) The median test developed by Mood (1950), Westenberg
(1948), or Mathisen (1943) is
m

1 .
T3 = izlsign[Ri - §(N+l)] =m®8,

~

for © based on the double exponential fo and Qo'
5.1.2 Exceedance Tests for Location

These tests obtain their name from the fact that they are
based on the count of one sample's pointswhich are either above or
below the other sample's maximum or minimum value.

They are rather special tests not ordinarily used in a standard

analysis. The following are taken from Hdjek and Siddk (1967):




(i)  The Haga (1959) test with work by $idak and Vondradek
(1957) is based on four quantities: A = # of Xi > max Yj’
A' = # of Y, >max X,, B' = # of X, <min Y,, and B = # of Y, < min
3 i i j h|

X, (i=1, ..., m; j=1, ..., n). Then the test statistic

Ty =A+B-A"-B

is optimal under special conditions for the uniform Fo where there
is neither an optimal rank test defined or a 8 test unless we consider

using <f1,f2> » 0 <p <q < 1l. However, the four quantities
P»q

A, A', B and B' are related to various comparison functions or D
and we mention the exceedance tests to show how they may fit into
the general approach taken here. When 6(u) does not fit B(u) well
we may use the Haga test as it is related to various 6(u). For
Bl(u) = %é-l(u) ( proportion of X's < Y) we know A = mfsize of
last jump in Bl(u)]; B' = m[size of first jump ‘in Bl(u)].
Similarly, define A' and B for 62(u) = é%—l(u). Thus, the Haga

test is related to first and last jump sizes in the two comparison

functions Bl(u) = Fé_l(u) and Bz(u) = ég-l(u).

(ii) Rosenbaum's (1954) test is a simpler test designed for

the alternative that Y is shifted to the right, 8 > 0. In our

notation this test statistic is m{1-D(u for max Yj)] and is more

easily adapted to the D(u) used here.
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5.1.3 Goodness of Fit Tests for Location

These tests are based on some measure of the distance between
%(x) and é(x). We present them here to show their relation to
6(uL and thus provide a wider statistical base for the importance

of B(u) and 6(u).

(i) The unnormalized Kolmogorov-Smirnov test statistic is

T = max |F(x) - G(x)| . Kolmogorov (1933) developed this for a one-
x
sample test and Smirnov (1939) for the two sample test. For

B(u) = FH_l(u), we have !

- 1 D(u) -
T = 1—x Sup ID(u) - ul

Durbin (1973) gives aderivation of the distribution of sup|{B(u)| which
may be used for studying the distribution of T. Graphically we plot
D(u) - u versus u and see if it significantly exceeds 0 in absolute

value which is determined by a given critical value from the dis-

tribution of sup |B(u)| .

(11) The Renyil test 1s also related to the comparison function

and weighted by H(x). It is

Ta - max (n+T)i%(x) - 6(x)ﬁ

A mF(x) + n G{x}

where A = {x: (n+m)~1[mi(x) +n é(x)] = é(x) > al}. Therefore,

~ |
Ta = max [JQ_S.LL:__UL]

A H(x)




87

(i1ii) The Cramer Von Mises test is related as follows

oF (x)+n G (x)
m+n

~3
]

(ntm) A (1=2) [7[G(x)-F (x) 1 2d[ ]

(rm) A (1-3) S (D (W) -ul? du
0

where u = H(x).

(iv)  Finally, we also may remark that Weiss (1976) gives an
analogy which shows a two-sample test of HO: D(u) = u = 0 can be
developed from any one sample goodness of fit test. Also, Pettitt

(1976) gives a two sample Anderson-Darling statistic

,
.. o 2
2 _mm (F-G)° oL L ¥ (n¥m)n, )

A= SR L
nm n+m Ze H(1-H) mn i=1

i(n+m-1) *
where M, = nD (—i—). Similar to 2.1.3 (iii) we obtain
i n+m

By 2
00w -u)

2 1
Anm = om IO u(l-u) du

where u = H(x).

The point we can make with these goodness of fit tests is that
they are all functions of D(u) - u. Thev can be computed from the

comparison functions and all measure the "size" of D(u) - u.

Parzen's D(u), as well as its extensions, attempts to model D(u)

and we will want to minimize the "distance" between D{u) and D(u).

In other words, we want D(u) to converge to the truth so that our

N

estimators, 8 and y,are consistent. Other location tests and

Cm L edieme—. o - - - B T




estimates are given in Table 3 (p. 29).

5.2 Scale Tests

5.2.1 Linear Rank tests and

These tests are of the same form as in section 5.1, i.e.,
N
= 5 i R or o a(R._ ). ror. th unct i
S p a (i, RNi orli c, a(FNf However, the score functions
i=1 i=1
a(i,RNQ or a(RVi) are different in that ‘hev are devised to detect

4

differences in the dispersion or scale parameter of the two dis-

tribution functions F and G.

(1) The Klotz (1962) test is

m Ri 2 .
= i — - . a_ 1
Tl L [JO(N+1)] 2a (8- %)
i=1
for fo’ the standard normal, where JO(U) = @ul(u). Hédjek and

Siddk remark that the Klotz test is asviptotically equivalent to
R
: o)
the Capon test where [Jo(ﬁiT)]h is replaced bv its expected value.

Our estimators & and ¥ are linear transformations of the Van der
Waerden and Klotz tests respectively when D(u) uses the normal
density for fo' Each is an asympototically optimal test for fo

the standard notrmal density function.
(if) The Ansari-Bradley test is

[-21-(rrr+n+l)—fRi - %(m—ﬁﬂ-l) []

1

It o~18

i
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=B - ] wh - S
2 - 2 N+1
i=1
_m _ m(N+1) .
= 3 (M+1) eI (p-3),

where & is calculated from Parzen's D(u) with fo(x) = %(l+|x|)-2,

the density for which the Ansari-Bradley test is also optimal.

We note that the Ansari-Bradley test is formed in a manner

similar to the Wilcoxon test for location, but with ranks

modified to detect the scale difference. Sukhatme (1957) has

also introduced a modified Wilcoxon test for scale differences.

The Siegel-Tukey test is similar but allows use of the Wilcoxon

tables for small samples. Though the Ansari-Bradley and Wilcoxon

tests are formed similarly they are optimal for different demsities.
Through this implementation of Parzen's (1980) approach we

obtain both location and scale tests for each density, as well as,

the estimates (these were given in Table 1 (p. 9) for completeness).

For example, a location difference test and estimate for f(x) =

% (1+lx|)-2 can be obtained from

-3 T 1 & Ry Ry
g = = iﬁl sign(i-— E;I) min (EII’ 1 - N+l).'

The quartile test for differences in scale seems to be another
example of a nonparametric test for one parametric difference

which has had no corresponding test for location difference

advocated which assumes the same density. 1In Table3 (p. 29) we give the




test statistics which we advocate for this fo.
(iii) The Quartile test developed by Westenberg (1948) is

1]

1
i=1

-3
n

N+1 N+1
7l -+

# of x obs. (M 1(.25), H'1(.75))

PP
[
12

m{l - D(.75) - D(.25)]

It is related to the comparison function that we use here and
a D(u) model can be obtained from the density for which it is

asymptotically optimal, i.e.

£ = 1, x| <F ,
1 I l 1
= N x > —
16x° 4

Using this density for fo in Parzen's D(u) modéi we obtain

1

V- R Hl(ml) ERUeNy
1+ ' %

YT

-1
m

for an estimate of the scale differences of the two samples.

The location difference estimate obtained simultaneously was given

in Table 3 (p. 29).

(iv) The Savage test [I.R. Savage (1956)]} is asymptotically

optimal for the exponential density and is defined as

m N -1
T= 7] 1 4 : i
i=1 j-N—R1+1
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The exponential density-quantile function, fO[QO(u)] is not

in the RKHS used to obtain & and 6 on the whole interval [0,1].
However, if we truncate the interval to [l, 1l - %l we may still use
all of the data to obtain an estimate of 6(u). However, we need

an algorithm to compute é and & for whatever the sample sizes

are using the <f f2>1 ; as given in Theorem 2.6.
— 1] - =
N’ N

This algorithm may also be used to truncate left and/or right

1’

portions of the combined sample. The result is quite different

from the Savage test and is discussed in section 2.4.

(v) In Table 3 (p.29) we also gave the scale tests developed from
Parzen's B(u) model which correspond to the logistic, double ex-
ponential, and Cauchy families for fo. Those @ functions provide
formulas for testing equality of scale, and thus extend the set
of nonparametric tests at our disposal by combining a location

and scale test optimal for the same density.

$5.2.2 Exceedance Tests for Scale

A variation of the location Haga test is due to Kamat (1956)
and has test statistic T = A + B' -~ A' - B where these components
are defined as in the Haga test (see 5.1.2 (i)). We remark that
this exceedance test is also a function of jump sizes in
Bl(u) - §&°1(u) and Bz(u) = &;'l(u). Simpler versions of the
Kemat test are given by Rosenbaum (1953) and Klotz (1962). We

mention this to give an indication of the work done relating to

comparison functions other than D(u) = FH-I(u). These tests
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provide comparisons for further research for Parzen's (1980)

Dl(u) and Dz(u) techniques.

5.2.3 Goodness of Fit Tests for Scale
Hajek and Sidak (1967) remark (p. 99) that one can make the
Kolmogorov-Smirnov, Renyi, and Cramer Von Mises tests more
sensitive to differences in scale by successively subtracting
smallest and largest pairs of CDi [see Hajek and Sidak (1967))
rather than subtracting CD s ecens CD

1 |3
can compute a goodness of fit test in two ways, one sensitive to

successively. So, one

location differences and one sensitive to scale differences.

Again, we see the attraction and need for simultaneously estimating

location and scale differences for a given problem, HO: F = G,

We emphasize that Parzen (1980) has both a location, 5, and
scale, @, component in the 6(u) estimator of D(u) = F[H-l(u)],
the comparison distribution function, which are asymptotically
optimal for the same fo. In the following section (5.3) we remark
on some relationships of Parzen's (1980) methods with various

robust, adaptive, and combinations of other techniques.

5.3 Remarks on Some Other Approaches and Extensions

5.3.1 Combinations of Separate Tests for Location and Scale
Duran, Tsai, and Lewis (1976) have combined tests of location

and scale to also simultaneously test for equality of both

parameters. They use Randles and Hogg's (1971) result, which states‘




that under Ho' even translation invariant statistics (Mood, Klotz,

. and Ansari-Bradley) are independert of odd translation invariant
statistics (Wilcoxon and Normal scores). Then using Chernoff and
Savage (1958) they obtain the asymptotic normality of the test

h statistics under Ho and, with more conditions, an asymptotic bi-~

variate normality result under certain alterratives, Their

alternatives are similar to Parzen's D(u) model where we assume

8 and ¢ small.

They gave no examples, but we still may make some ccmparisons.

More research is needed for their techniques to be evaluated on
examples and they did not provide any methods for estimating the
location or scale differences. Parzen's approach nsturally leads
one to simultaneous location and scale tests for the same underlying
density which 1is not the case with the even and odd statistics. For
example, combinations could be the Wilcoxon and Ansari-Bradley
(different fo) or Quartile and Median (different fo) or Normal
scores and Klotz (f° = normal) tests. The analogous result irom
Parzen's D(u) model is that it is asymptotically optimal for one

fo (examples in Table 1, p. 9). For local alternatives there is

a simultaneous test for location and scale. From Corollary 2.2,

it 1is
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and is approximately a x2(2); but, 8 and ¥ also estimate the

differences in parameters of the two samples [Parzen (1980)].
In section 3 we use a(u) - B(u) to help choose f° correctly, Further,
section 6.3 methods will estimate the differerices between samples
at any percentile or quantile as well. Lepage (1975, 1976)
also gives many results on the distributions and efficiencies of
this method of combining test#. Other authors have tried to form
tests which are insensitive to differences in one of the parameters
while they are sensitive to differences in the other.
5.3.2 Robust and Similar Tests

The classical F-test for Ho: % = 1 has been found to be non-
robust to deviations from normality with respect to size by many
authors. Shorack (1969) examines an approximate permutation test,
a "jacknife” procedure, and some "rank like" and other tests for

o
H : 1. 1 by considering their Pitman asymptotic relative ef-

o' o

ficieicy and Monte Carlo studies of power. Shorack's simulation
included the uniform, normal, and double exponential densities.
The rank like tests do not use all the scale properties of a
continuous variable but have other desirable properties as given
in Moses (1963). The permutation test (APF-test) is an approxi-
mation based on an F statistic and a minor variation (for

locations unknown) of an approach used by Box and Anderson (1955).

It has the same asymptotic relative efficiency as the F test but a

very different robustness level as seen in the Monte Carlo results.




~ Shorack also inveiis this test to obcain a confidence interval for

o
1.2

(;’) . Another quite practical test which did not do badlv
2

in the simulation for m = n.was Levene's (1960) test. Although
assumptions are violated, Levene suggested doing an ANOVA on the
means of {(Xi - i)z} and {(Y1 - ?)2}. The jacknife like procedure
also requires m = n and jacknifes the logarithms of sample
variances. It was on a par with the APF test in terms of
power, The rank like tests were also an ANOVA of log Si where
Si is a scale parameter estimator for a subgroup of all nor m
observations. The APF test was reported to do quite well in
comparison to the others. The approximation of the APF test
statistic's distribution makes it attractive for small samples,
but it seems quite cumbersome especially in confidence interval
calculation. It does not help one choose f0 nor does it decide
anything about the location parameter differences.

Some of the earliest attempts to deal with the two sample
problem were also approximations. Murphy (1976) compares the
t-test, Aspin-Welsh approximate t-test, and Wilcoxon test by

simulation. The Aspin-Welsh approximate t statistic is

t= (X - )/

where

1 ¢, (1-c)?

at = m-D T (n-1) °

and

95




c =

given by Welsh (1937) with critical values by Aspin (1949), The

three tests were compared for normal, uniform, and exponential

fo densities. It is interesting that Murphy concludes the

Aspin-Welsh test is highly satisfactory for Ho: ul = uz

when o, $ o, while the Wilcoxon-Mann-Whitney is not. Murphy

also pointed out that no test was satisfactory when skewness was

present. We may choose fo and calculate our results even for

fo skewed. When one assumes fo normal and % * 02, testing

HO: u1

(1970) presents practical solutions to the problem. It |

= U, is known as the Behrens-Fisher problem. Sheffé

appears Behrens (1929) and then Fisher (1935a) began this expansion

of the two sample location problem by considering 9 + Oye This

was Sir Ronald Fisher's (1935a) controversial paﬁer, "The Fiducial

Argument in Statistical Inference." He also proposed nothing

less than a randomization test, also in 1935, in his book, The

Design of Experiments. Many authors have studied the robustness

of the t-test with respect to a. Posten (1978) did an extensive

simulation study. He did his study of the t-test over 87

Pearson curve distributions where the level of the test was estimated

from 100,000 generated t-values, except for one case (n=30 had

"only” 83,000). Posten varied n from S5 to 30, B1 from 0 to 2,

and 82 from 1.4 to 7.8. Postenpoints out the obvious conclusions from

his tables; i.e., the t is very robust with respect to a when n = m.




97

In fact, all tabulated significance levels round to .04, .05, or
.06 through the whole simulation study which had nominal level g = .05.
Other authors [e.g. Pearson (1931), Geary (1947), Finch (1950), Gayen
(1950) and Box (1953) ] have shown that this is not the case with the
commonly used and taught F-test for variance.

Since the t-test is very robust with respect to a, we should
choose a linear rank test based on power or other considerations,
not the accuracy of significance levels. 1In this regard, Fligner
and Killeen (1976) have introduced analogues of the Ansari-
Bradley, Mood, and Klotz tests which have the same Pitman ef-
ficiency, but significantly higher powers for small samples.
They respectively are

T, = [m(n+m)]-1

1 Ry

i=1

He-—3
[y

, and

2.-1 © 2
T, = [m(mn)°] ~ | R
2 o 1

m R
-1 -1.1 i 2

where Ri is the rank of V1 = |X, -~ m| among the combined sample

i

of Vis and W, = IYj - m| where m 1is the median of the combined

]

sample of {Xi} and {Y.}. These tests may be chosen on the basis of

h|
small sample power, where we would choose Parzen's (1980) tests
relating to D(u) based on simultaneous estimation of 8 and ¢ or
graphical and statistical help in choosing fof Perhaps these

authors' "

score" functions can be interpreted in a way to help




develcp more small sample estimators for the Parzen approach.

Other authors have conjectured, if one can not reduce the influence

of nuisance parameters in a'particulat test, perhaps one can

adapt to the influence of the nuisance parameter and obtain a

e, in fact,

more powerful test of that particular parameter.

' model both the location and scale differences in the work haere.

5.3.3 Adaptive Tvpe Tests

Sen (1962) and Potthoff (1963) have attempted adapting

TR Prtvera

rank tests for location to adjust for unequal variances by a

However, many of the rank tests then

conservative approach.

e e e wma e 17

became dependent on fo. Others have been more successful.

Hogg, Fisher, and Randles (1975) have designed adaptive locatiom

test procedures for skewed distributions. Very few nonparametric

or robust procedures consider how to detect or what to do when

skewness is present. Parzen (1979, 1980) has also given techniques

skewness, by using an auto-

to help detect bimodality, as well as

regressive dansity estimator. Hogg (1976) alsc remarks on a

possible adaptive two sample scale tast where une decides to use

a Kamat, Klotz, Ansari-Bradley, or quartile test based om the

combined order statistics.

5.3.4 Other Approaches of Interest

Rorwar and Hollander (1975) have ziven an ampirical Bayes

estimator for F(x) which is optimal for 3 Ferguson Dirichlet

-

prior. Perhaps they would want us o develop a Baves D(u) and
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B(u). The first problem is to determine when this prior is
adequate.

Censored modifications for the Kolmogorov-Smirnov test have
been given by Tsao (1954) and Ishii (1958). Mehrotra and Johnson

(1976) extend results in Héjek and Sidak for asymptotically most

powerful tests in the two sample problem to apply to censored
data, i.e., the first r observations. As mentioned in Parzen

(1979, 1980), one can truncate the reproducing kernel Hilbert

space estimates by using <f where 0 < p < q < 1 or use

10527 }
P»q !

an inner product based on the censored observations. :
Other directions to go include the Wald and Wolfowitz (1940)

runs test and any relation it has to these methods. Also, Sen

(1963) has investigated a class of tests based on linear combin-

and X

ations of the number of Y, between X which can be

1 (1) (i+1)
related to the spacings of the jump points in 6(u). Eubank 3
(1979) provides one sample optimal spacings which can be generalized

to the two sample problem.

With regard to estimating scale differences, Bhattacharyya ;
(1977) has given techniques based on Sen's (1966) modification for k
scale parameters of Hodges and Lehmann's technique for estimating
location shift. Bhattacharyya provides estimators of 01/02

corresponding to the Ansari~Bradley, Siegel-Tukey, and a modified

Sukhatme test. Lambscher and Odeh (1976) have also proposed

practical methods for estimating scale parameters from a &
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Sukhatme test. Duran (1976) gives a review of approximately 80
references on tests for scale with many comments on these and

other tests. One is the Barton and David (1958) test, not covered
here. The great number of techniques Duran comments on makes it
impossible to be very detailed for any; but, he gives many valuable
comments and references on comparisons of these tests and "minor"

modifications of them. Also, Zuijlen (1977) extends much of the

rank tests' distribution theory to tte non i.i.d. case. Other papers

of particular interest deal with comparison function techniques.

5.3.5 Comparison Function Techniques

Wilk and Gnanadesikan (1968) stimulated research in the area
of probability plotting where they use Q-Q and P-P plots to compare
data sets. A Q-Q plot is essentially a plot of the Y quantile
function versus the X quantile function (see segtion 4.2), the
points being joined for a common u, i.e., G-lF(x) versus X = Qx(u).

CS -1 .
P-P plots are a plot of u, = QX versus u, QY where Qx = QY

X
at each point., Switzer (1976) and Doksum and Sievers (1976)

extend the graphical work of Wilk and Gnanadesikan by developing
confidence procedures for various comparison functions used in the
two sample problem. They estimate a general treatment function,
t(x). Since they include the data sets in their papers, we are able

to compare their results to those developed here (section 4).

Steck, Zimmer, and Williams (1974) have also developed

confidence bands based on Dz(u) = G[F-l(u)] or Dl(u) = F[G-l(u)].
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Further research may generalize this to D(u) = F[H—l(u)] and

provide some further comparison of the two. Doksum (1974) has

also given the asymptotic distribution of t'(x) = G-llF(x)] - X.

Doksum and Sievers (1976) have also begun developing confidence
bands with or without a location scale model being assumed. They
also invert two sample statistics for their bands. Their location

scale m ‘el is

t'"(x) = u, + i& (x~p.)-x = u, - 22 u, + 633 ~ x
2 o1 1 2 01 1l 01

=u, - (9-1) by + ¢ x.

u,—H 0,-0
and ¢ = 20 1
1 1

is not done. However, they have given a likelihood ratio confidence

In this casé, simultaneously estimating 8 =

band for fo normal when m = n. Further research could compare this

with Parzen's (1980) techniques for estimating

-1
Di(u) = d(u) = flE:IﬁEll
glG "(uw)]

the likelihood ratio for the two samples which does not require

m = n, Doksum and Sievers show asymptotic equivalence to M.L.E.
bands and remark that an advantage of their's is that it can be
applied to censored data. Again, Parzen's (1980) techniques have

a potential for censored data analysis which can be further ex-
plored. They also remark that some of their numerical results show

that the general bands are quite inefficient if the correct model

is normal. This gives us a motivation to use D(u) in helping




identify the correct fo. We do it both for statistical reasons of

efficiency and scientific reasons of identifying a correct model.
We conclude this section with a3 few comments on some of the vast

amount of research concerning the two sample problem.

5.4 Remarks on the Literature Review

The Behrens-Fisher problem remains open 45 years after the
work for which it was named and the list of several more general
approximate solutions grows. The approach of Parzen (1980)
implemented here has many of the aspects of several of the other
authors through the decades. Hopefully, it will contribute to a

unified approach by consideration of D(u) and D(u) which nearly

all the previous techniques are related to in some way. Thus far,

only asymptotic properties of 6(u) have been given; however,
since 5 and & directly relate to linear rank tests, they provide
an easy extension to calculation of simultaneous estimates of
location and scale differences and use of the finite sample size
linear rank tables. This helps unify the techniques of sections
5.1.1 and 5.2.1. We also see the importance of B(U) in the
exceedance and goodness of fit tests. The relationship of

6(u) to B(u) will help utilize goodness of fit tests in choosing
the correct linear rank test. By matching 6(u) to 6(u) we will
not just adapt the scale differences and estimate the location

differences or vice-versa. Rather, we will simultaneously

estimate location and scale differences and by comparing the
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results for various fok, determine which family should be assumed

for a good fit. This has begun to be explored in sections 3.1
to 3.2.

One method of obtaining a robust ecutimate Is to trim the data.
This can be explored by considering O < p < qv< 1 rather than
p=1-q=0.

The recent research on many different comparison function
techniques provides techniques to compare with Parzen's (1980)
approach using the comparison function, B(u) = g[ﬁ-l(u)]. This
is begun in section 4.

One problem with the two sample research has been simultaneous

testing of location and scale differences. This approach clearly

will provide a solution, i.e., from Corollary 2.2, we have

A -

L= Ny (3)'2 (:) 2 i,

under Ho: F = G where é is the location component and & is the
scale component. One can easily see which difference has a

dreater change with respect to % at least. Another problemn,
especially with nonparametric or distribution free tests, has been
to estimate the difference once one has been detected. Parzen's
(1980) technique provides local estimators, 8 and @. of the differ-
ence. With A, we estimate My = and 6, ~ ©

Q "1 2 1

This pair exists for many useful densities and each estimator is

under H .
a

asymptotically optimal for a common density. Another problem

which the adaptive tests are designed to deal with 18 to first

make a decision about the type of fo and then an independent test




of a parameter difference using the decision about fo. Parzen's

approach using B(u) and B(u) gives the asymptotic distribution of

3 and ¢ given f . The results in section 3 lead to a minimum

distance choice for fo among the set of fo that one considers.

By examining the 8 and & for each fo we gain an indicztion of

the importance or lack of importance as to which fo we should
assume. By examining the residuals, 6(u) - B(u), we use both the

location and scale parameters to decide on fo. However, the

estimators of 8 and ¢ are functions of the R, so a toplc of further

i
research could be to try to obtain an independent choice of fo'
Still the scientific interpretations may lead one to consider
several models for the data although a statistically more powerful
test may exist choosing just one model. 1In fact, the adaptive
answer is to choose fo based on 6 and then, independently estimate
AQ' We may do this, since {Ri} are independently distributed of
Kyl

A common problem that robust techniques try to deal with is
having a known fo for the data but shifted location and/or scale
for part of the data. As mentioned earlier, using 0 < p < q <1
would be a common technique for dealing with this problem. There is
an indication the truncation does well with the Cauchy fo in

Rothenberg, Fisher, and Tilanus (1964). This can be further

explored. Also one may attempt to model skewness with appropriate

fo in the D(u) model or AQ(u) model.

104




3cotz, at., al. (1976) have Dresented a bivariate lemsity
astimation technique which also helps deal with bimodality. e
also analyvze hiis data set in section 4.3, although not with a
bivariate approach. Presently very few approachss attempt to
estimate skewness or bimodality differences of two samples.
Some indication of how this might be done with a quadratic D(u)

model 1is given in section 6. For other directions of research

see Parzen (1979, 1980) or section 5.
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. SOME ALTERNATIVE MODELS FOR D(u)

In our approach, just as in ordinary regression, one will often
consider more than one model for the data.

With our D(u) model we assume an fo family for the underlying
densityv, although we give techniques to help choose it. We also
assume a linear Taylor series expansion is adequate and that 9 and
v are small. [If © and ¢ are found to be of moderate size we may
wish to improve the expansion by including more terms as in Section 6.1.

Rather than including more terms, we mav use the AQ (see 1.10)
model which is accurate under the alternatives 9 # 0 and/or y ¥ 0.

In section 6.2 we do this,still assuming that the underlying
familvy is the same for both the Ki and Y,. There we suggest es-

u ’Uj

timators of u, - u, rather than 8 = 1 and o, - o, rather than
2 1 «‘1 2 1

If we had no idea which f0 would model the data, we

€279

b
1
may wish to construct a model which converges to the correct fo

.b -

and is, {n a sense, fo free. In the past the convergence has been
quite slow and tests have been less powerful than those which assume
f° known. However, in section 6.) we suggest methods to be explored
which make still fewer assumptions than those made thus far

regarding fo.

6.] The Quadratic Model

In this section we give a auadratic expansion which results in

an alternate model of D(u) contalining some of the quadratic terms, i.e.
-1
those of the quadratic expansion of Fo about S .
1
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~

In section I we rapreseat G(x) in tarms of Fo as follows (when

3 and ¥ are small)

X=uy X=u,
G(x) & F () =3 = y(5)]
1 1

X-u, X~y

A quadracic Taylor series expansion of F (=3 =) about 1

gives
1 71

X=u - x=u
1

1 !
G(x) = Fo( " )—fo(-;I-)[e*w(

el

X=u

X=U
' 1 1,42
4"1%(—-—0,1 )Cew(---—‘,1 )]

Again, letting x = B.l(u) - F'l(u) - u1+u1 Qo(u) as on p. 18, gives

X-u

Qo(u) - and

GlH ™ (w) 15rn ()= Q_(u) (949 Q_ () HI£,Q, ()T, (w) [3°+285Q_ ()
#4720
Since H(x) = AF(x) + (1-1)G(x), we have for x = H‘l(u)
2
i eamm ™ )+ (1-0) [P (w)=9F_Q (w)=4Q ()£ Q, (wHiE, Q@I ()
) 2 ed
+ 2 0 (W) (@0 (w)+AE 2, (I (0, (W],

and, since D(u) = Fﬂ-l(u) , Wwe have

u D(u)-(l—k)[Bfooa(u)+mQ°(u)fooo(u)+6'f°Q°(u)J°(u)

- te 2
+- y'foQo(u)uo(u)QO!u)+w ~°Q°(u)Jo(u)Qo (W]




where o' = -%02, y' = -4y, and ¢*' = -sz. Finally,
D(u)-ui(1~l)Iefl(u)+wf2(u)+e'fa(u)+1'f6(u)+¢'f5(u)],

where fl(u) = fOQO(u),fz(u) = Qo(u)foqo(u).f3(0) = Jo(u)fooo(u).

£,(w) = Q_(w)JI_ (w1 Q (w), and £ (u) = Qoz(u)Jo(u)foQo(u).

If the fi(“) are in the RKHS of B(u) with p =1 - q = 0, then
we may estimate 8, ¢, 8', yv', and ¥' provided we treat 8', y',
and ¢' as free parameters. For computational convenience we would
do this to begin with. This model gives us a 5 x 5 matrix, 25,
rather than a 2 x 2 £ as in the linear expansion. 1In fact, for 25
and &g in this quadratic expansion we need fifteen and five inner
products to exist respectively. One may try to orthogonalize ts
to reduce the problem. We suspect the shapes of fOQO(u)Jo(u)- Qo(u)
and fOQO(u)Jo(u)Qoz(u) may be useful detectors of bimocdality

and skewness respectively. We leave this for further research.

6.2 The AQ Model

As shown in Theorem 1.1, Parzen's (1979) model for Q(u) in
the one sample and.scale problem gives an asymptotically exact
two sample model for AQ(u) also. In this section we further
develop this model by suggesting estimators of Ho=Hys 090y, and

4, (u) based on Parzem (1961, 1967). We also give the asymptotic

Q

distribution of these estimators and some remarks on their use in

the analysis of two sample data.
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The model for AQ(u) suggested by Theorem 1.1 is

£,Q_(W)8o(w)=a £ 0 (w)+8 0 (w)f Q (u) ,

Q

with the following estimator

£.Q_(wa (u>-8ufooo(u)+iooo(u)foqo<u)

Q

obtained using Parzen (1979) results.

We suggest estimators of Au =u, - and 8_ =0, - 0

1 2 1
in Theorem 6.1 and give their asymptotic distribution.

Theorem 6.1: If the conditions of Theorem 1.1 hold and foQo
and Qo(foqo) are membs.9 of .ne RKHS of B(u) for p=1-q =20,

then as N + ® such thyt ) . = = + ) (0 <A < 1), we have
~ N o o

R 0, 2.1
Al o |20 [(o)’czz

~ ~ ~ ~

where Au = Bymyy Ac = C,=0y, €y

are as given in Parzen (1979).

2 2 2 - -
- Aoal +(1-)«°)c2 , and vy and 01

Proof: From Csorgo and Revesz (1978), Parzen (1979), and Eubank (1979)

we obtain for i = 1 or 2 where n, denotes the 1" sample size

/;1 foQo(u)[61(“)-u1'°1°o(“)] 11 o, Bu),

and further [using Parzen (1961, 1967)],
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-

u_ -y
i"1
" D 0, 2.-1
it
Letting Au =uy -y and Aa =0, = 01’ we obtain .
A -4 ’
AU u D 0 2.-1
AOGH N 3N (), et )
o] g
2 2 2 -1 -1 .
where ¢, = Aoal + (l-Ao)cJ2 , since N = ny AN = nz(l-)‘N) and )\N*Ao

as N+«, and linear combinations of independently distributed random

variables converge to the linear combination of their asymptotic limits.

Corollary 6.1: If the conditions of Theorem 6.1 hold, then

Au and Ac are given by

4
. -1 -1 -1

o>
)
[y}
i
o~
s ]
-t
L}
™
1]
W

o
wherel is given in section 2, & and 8, are given in Parzen (1979)

and Eubank (1979) for i = 1, 2 as

<fOQO’(fOQO)Qi> .
& * - , .
<Q (£,0,)+(£,Q,)0,> -

and ve define By "B - & -

-

Proof: By definition of Au and Ao‘ [éu] - 2-132 - 2-13_1 .
A
o

By definition of matrix operatioms, 2_132-2-131-2‘1(32-31)-1‘.-113,

since 8178578, - Then, by definition of inner products, since




2y ™2, - 3, we note that

1l

-

| <£,0,02,9,(2,=0))>

06’ o

BT e (6,00,£,0, 20>
Remarks: We call 50(“) = 6Y(“) - 6x(u) the raw difference of

quantile functions at the quantile u and &Q(u) = aY(u) - 6x(u) the

estimated difference of quantile functions at the quantile u.

These names are suggestive of our interpretation of AQ(u). Note

that this interpretation and model of AQ(u) are aaymptétically

exact under all location and scale alternatives of HO: F=gG,

{.e., 9 # 0 and ¥ # 0. However, since c, involves the scale

parameters, we note that in using the estimators suggested here,

as in Parzen (1979) and Eubank (1979), we presently need to

treat c2 as a free narameter. The implementation and adequacy

of the treatment and model is a problem for further research. We é‘

emphasize that & (u) may be estimated independently of D(u).

Q
Next we give a definition and the asymptotic distribution of
v‘. £ : -
3w, 0 <u <l Ler 3 (u) = N JUNCUENC 15(w)] be the
standardized AQ(u) so that A’(u) « () for 0 <u < 1.

Theorem 6.2: 1f the conditions of Theoram 6.1 hold and fo is

symmetric, for uy e(0,1); 1=1, ..., k* and gs(gp-[A’(ul), As(u:).
- 1 1
...,A’(uk)} , then as ¥ ~ = guch that \N = % - Ro (0 < Ro < 1), we H

have

R 5 2
~ )
3 (w* N,‘(_O_, e, I,
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) (note % is singular when k > 2) and

where £, = (o K

k 1]

foQo(ui)foQo(uj) Qo(ui)foQo(uj)foQO(uj)

o = +
ij 1.2 :
Bl 2wdu f o 1-q (w3 w1% du
A Proof: Since
AS(U) =1 (éu) s
A
a
where
— -
foQo(ul) Qo(ul)foQo(ul)
foQo(uz) Qo(uz)foQo(uz)
L=/ .
foQo(uk) Qo(uk)foQo(uk) ’
<y )
and since, éu ' B N.(0,c 22 1), we have
A ! 2=""2
a
; D 2 -1,
As(g) - Nk(g, L ¢y r L") .

} implies oij is as desired.

- -l'a
Clearly, Zk LI L (oij
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Remarks: For this AQ(u) estimator we may directly apply the results

of Eubank (1979) and choose (ui; i=1, ..., k) for small k as

he suggests. We may also use {ui; i=1, ..., N} where

QY(u) or Qx(u) have jump points, i.e., u, corresponding to the data

i

points.
A model for AQ(u) provides many problems for further research
besides those mentioned thus far. For example, as Professor W. C.

Parr has pointed out to me, if a plot of A_(u) versus Qo(“) is

Q

linear, then F and G are location and scale shifts of the dis-
tribution corresponding to Qo(u). Further, the intercept of the

vertical axis is u, - My and the slope of the line 1is o, - 0,.

2 1

Tests and estimates based on this fact are a topic of further

2

research. We also leave the Brownian bridge representation of

é(u), & (u), and & (uv) - A

(u) as topics for further research.

Q Q Q

We remark that the residuals, A (u) - Ao(u), once their distribution

Q
was derived, could be used to select an appropriate fo to model the
data for any location and scale alternative hypothesis of H°= F=(
for independent samples.

Finally, although we do not address the k-sample problem in

this work we offer Theorem 6.3 for the following definition of

the k-sample problem to suggest further research.

Suppose we have k > 2 independent random samples, denoted by

{in; j=1, ...,k i=1, ..., ni}
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where nj is the sample size of the jth random sample and each sample
th
i realizations of the j random variable X,. Further,
jX-u.
suppose Xj has distribution function Fj(x) = Fo(—g—l) where Fo

is n

satisfies the conditions of Theorem 6.1. This is essentially

a generalized analysis of variance problem studied by White (1981)

and similar to a problem studied by Hajek and Sidak (1967),

chapter 3, section 4, and Sen (1962), but more general. In the
following theorem we may study a general contrast of the location

parameters and the scale parameters simultaneously for the k

populations.
Theorem 6.3: For this definition of the k-sample problem, let
k |

{aj; j=1, ..., k} be fixed constants, ZQ = jzl anj(u)’

k k k
2 = Y ayp,,andf = ] ao. Thenas N= )} n, +« such that
u = j J o f o 33 =

i=1 i=1 j=1

o1
)‘sz S -»)‘oj (0<xoj<l);3=l,...,k, we have
> L
N £,0 (W [£o(w=L -2 Q (W] 5 ¢y B(w)
ar}
(zu-zu)
- D 0 2_-1
AN Zo-t’.o ~>N2[(0),C3E 1,

A k. A k N . R

where £ = ) au,and & = ) a, o, and ¥ and O  are as in Parzen
Wooyap 1 °© 4o d i ‘

(1979) and Eubank (1979). Finally, ¢,” = ] a/ A, o.%.

551 %1 e %




k3 .
Proof: B a‘ko; I, Bj(u) =cy 3(u) since all the 3,(u) are in-
J'l < 4 -

dependent 3rownian bridges, This gives the first result. Similarly,

- U, Z -l
N T aj(;j D= A GHH
j=1 373 T aq
gives
k
(T a zxojgjz) . c32 7L,
i=1

for the variance-covariance matrix needed. Clearly, the asymptotic

mean is zero.

6.3 Raw Q and J Fstimators

Tor the D(u) model suggested by Parzen (1980) we have im-
Uyl 0,=0

.c 1 and y = 20 1

1 1

(u) model also depends on fo. A topic of further reseagca Is to

plemented estimators of 9 = given fo' Our

“Q
develop estimators which converze to f, and provide estimators of the
location and scale parametars. In this section we suggest an
approach to this toapic.

Suppose we accept the linear approximation in B(u) but do not
have a viable choice for Eo. We may then consider studyving the
technique proposed in this section. For the inner products in
2_1 g we only need QO and Jo. Parzen (1979) gives a'consistenc

astimace of Qo in é and Hajek and Sidak (1967, p. 260 equation (7))

give a consistent estimate of J, denoted J, which are each functiomns

of the order statistics.

Ao -




Then Parzen's (1980) model yields (for symmetric fo)

: [ 1=3_ (@) 1d(D(w)-u]

fotta, 1% au

and

. [otTimg ()3 () Jd[D(w)-u]

y o= )
folll-Qo(u)Jo(u)lzdu i

~

which are solely functions of Qo' Jo’ and the data, D. We need

appropriate definitions of J and Q using the data based on Q and

J perhaps. Further research may explore these estimators from

Parzen (1979) and Hajek and $idak (1967).

One of the difficulties in the problem would be to combine the

two samples' different Q and J to obtain the 8 and ¢ estimators.




7. EVALUATION OF D(u) THROUGH SIMULATION EXAMPLES

As in any regression model, our regression model for D(u)
from Parzen (1980) may not contain the correct independent
variables and error term. We have added sections 2, 3, 4, and §
to Parzen's arguments for using the D(u) model and show how it
provides useful information whether we reject HO: F = G or not.
As suggested in the remarks of sections 4 and 5 and in the con-
fidence regions for 9 and/or ¥ in section 2, we desire to make
inferences using é, &, and 5(u) when we detect that 8 # 0 or
¢ # 0. We also provide the AQ(u) model whicﬁ‘we know may be used
when § # 0 or ¢y # 0. As mentioned in sections 2.4 and 4.2, we
also become interested in trimming our estimates of 8 and ¢ for
some particular densities or in the presence of suspected outliers.
In section 7.1 we make remarks on a design for 3 simulation study to
evaluate the accuracy of the D(u) estimator. In section 7.2 we
give a few simulated examples with "large" 8 and ¢ for six different

densities and m = n = 30.

7.1 Remarks on Factors of Interest in a Simulation Study

In this section we propose that a simulation study of D(u)

and AQ(u) include:

117
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(1) 1investigation of the effects of 8, ¢, n, and m on the
estimates in B(u) and 8Q(u) for various fo, and

(2) investigation of the potential value of truncation of the
estimators inB(u) and &Q(u) when the two samples have some con-
taminated observations.

Each of the factors involved in a design should be at several

levels. We propose 8, ¢, n, m, fo’ and contamination as the

factors. Some dependent variables of interest are:

~

() D(“i) - D(ui) ’ A (“1) - AQ(“i)’
(2) D(ui) - D(ui) , AQ(ui) - AQ(“i)’
3) -8, A ~b,

u n
(4) “‘ - ‘b ’ AO - AG’

and various functions of these quantities, for example, mean

square error, bias, and variance of the estimates. We would expect

the main effect of each factor to be significant in predicting
most of the dependent variables. Also, if the & x ¥ interaction
were not significant in its effect on a dependent variable, as we "j
hope for small and moderate & and §, then the simultaneous estimation of
location and scale parameter differences will pose no problem

beyond the ordinary estimation problems of an individual location or
scale difference that researchers have traditionally dealt with.

The implementation of this simulation study is a topic of further

research. The next section reports on six simulated examples.
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7.2 Simulated Examples

While in section 4 we compare the approach here with analysis
of "live" data sets from other research, in this section we report

on a few simulated examples to begin to explore the situations

where our D(u) model will obtsin reliable results. These examples
demonstrate the need for further research ard understanding of tte
techniques developed in this work.

We generated six data sets and submitted them to anmaiysis. All
six pairs of samples used m = n = 30, 6 = .5, and ¥ = .5, One pair
was generated from each of the six distributions given in Tables 5a
and 5b. This means each of the 8 in Table 5a and each of the & in
Table 5b are estimating the true value of .5. The N, L, C, D.E.,
A.B., and Q denote the normal, logistic, Cauchy, double exponential,
"Ansari-Bradley"”, and "quartile" densities respectively. The '*' by
an estimate denotes the estimate is beyond two Standard deviations
(under HO: F = G) from its true value of .5.

The theoretical error rate under Ho: 8 =y = 0 is approximately
.05 + .05 - (.05)2 = .0975 for a given fo' Since we have no

replications we are unable to draw any conclusions.

It is pleasing that 56 of the 72 nonparametric estimates were
within two standard deviations of the true 6 or ¥ for two reasons,
although we make no conclusions regarding the results without replica-
tions. One reason is that five of the six columns of Table 5 have
estimates from a nonoptimal fo. The other reason is that o, and o’

8 v
are derived under Ho: F = G, rather than nonzero values of 6 and ¥
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5a. Simulated 5 Fxamples
é True fo
Assumed N L C D.E. A.B. Q
o £
] o
) .26 N .22 .50 .62 .21 .20 .86
45 L .31 .87  1.15 .47 .3 1.72%
.37 C -.08 .27 .82 a4 .20 1.41%
.26 D.E 0 .27 .53 .4 .13 .93
.22 A.B -.16% .03% .23 .37 .04% .54
.08 Q .01* .16* .08% 04% .007% .23%
5b. Simulated @ Examples
& True fo
Assumed N L c D.E A.B Q
(o f
/] o
.18 N .52 .29 .24 .26 .40 .37
.22 L .68 .35 .30 .31 .50 b
.16 c .29 J12% J12% . 08* .16% L12%
.26 D.F. .83 .43 .39 .37 .60 .52
.63 A.B. 1.74 77 .80 .50 1.07 .75
.26 Q .93 .27 .27 .13 .27 .27
a: = HN(8) and a; = A7(y) under HO: F=(G

]
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as in these examples. Perhaps some questions of interest suggested
by Tables 5a and 5b would involve testing location parameters with
fo the "qﬁartile" density and testing scale parameters with f° the
Cauchy density.

A definite topic of further research is to determine what

values of 8 and ¥ may be used with reliable results for the D(u)

model.
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8. CONCLUDING REMARKS

Here we summarize what we have done, what we have not done, aund
make suggestions for further investigation and implementation. We

begin with the mathematical results.

8.1 The Mathematical Problem

With Parzen's (1961, 1979, 1980) time series regression models
using the quantile function we have provided new theory and methods
for studying how two samples differ in location and scale parameters
and at all quantiles. These methods assume continuous increasing
Fo and all but the exponential densities were symmetric about zero.
Nevertheless, the body of simple linear rank theory and methods for
location and scale parameter differences has been expanded and made
more complete. The test obtained using Parzen's (1980) D(u) model is
a simultaneous location and scale test when the two population dis-
tributions are a location and scale shift of a common distribution.
These tests are nonparametric, but still provide estimators of tle
location differences by é and the scale differences by @ when fo is
the correct density. We also give computational formulas for é and
; simultaneously or individually for several underlying densities.

By examining the residuals, B(u) - 6(u), for a finite set of
u values we are given some guidance in selecting the underlying

density fo which seems to model the data better than others. This

also provides a criteria for selecting which set of nonparametric
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tests and estimators to use.

There is always the possibility that 6(u) will not fit 6(u) wvell.
By examining ﬁ(u) - B(U) at different values of u we may see which
quantiles contribute more to the deviation of 6(u) from ﬁ(u). The
willing user may also suggest his own fo and go through the estimation
and testing calculations to obtain another fo which may model the data
better. In any event, our significance levels are correct as given in
Corollary 2.2 and Theorem 2.7. The other confusing possibility would
be that several fo would fit the data well. 1In this case we would
need to check 1if all é and & were consistent and remark that a larger
sample size will be more discriminating. Eubank's (1979) optimal
uy for a given density may become valuable in this discrimination
process. Also of interest here are the alternate models of D(u).

We discuss what consequence thliese techniques have for the

scientist who analyzes two sample data.

8.2 The Scientific Problem

Given two samples from an experiment, often a treatment and
control group, the scientist i{s faced with determining how the
two samples differ and trying to model and explain that dif-
ference., This implementation of Parzen's (1980) models provides
a general location and scale approach., The test statistics
and estimators for parametric differences are easily cal-

culated frcm the ranks of the X observations in the combined

sample of X's and Y's and fo. Where an existing simple linear rank




statistic 1s a linear transform of 8 or ¥, there are finite

sample size tables which may be used if n and m are not large.

There are also several graphical comparisons of the two samples
provided. The slope of B(u) provides a likelihood ratio type com-
parison function of the two samples at each quantile. We also

provide a graphical comparison of the differences of the two

samples at each quantile, 1i.e., QY - Q‘.

Besides the graphical comparisons for 4 one may develop

Q

tests of HO: F = G versus a difference in location and scale.

Also provided are the tests and estimates of location and scale

U, -y 9,-0,
and ¢ . In additiom,
1 .9

whether these differences are zero or not, D(u) - D(u) provides a

]

difference by considering 8 =

criteria for choosing an adequate density to model the data. One
may also leave one of the differences out and see whether the other
difference alone is an adequate model of the differences of the

two samples. That is, one may use 6(u) - u = (1-}) 6 foQo(u) or
B(U) - u= (1-}) & Qo(u) foQO(u) rather than both terms at once,

as illustrated with the exponential in Theorem 2.3. In this case,

we merely drop some terms from the distributions developed for D(u),

6(u) - 6(u). and AQ(U).
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